Biology Online is a Biology blog and dictionary site that provides up to date articles on the latest developments in biological science. The Biology Online Dictionary is a completely free and open dictionary with over 60,000 biology terms. It uses the wiki concept, so that anyone can make a contribution.
Tag: pathobiology

Pathobiology Of Broken Heart Syndrome

When someone says “I could die of a broken heart…”, chances are, that person may be truly risking life from a broken heart – a condition referred to as broken heart syndrome. The emotional agony can be likened to a physical pain. Apparently, it was only recently that it gained stalwart attention from researchers as they began to probe the pathobiology behind a broken heart syndrome.

 

 

 

Broken heart syndrome – overview

Hearing stories of a person in severe emotional distraught from a loved one’s death and then died not long after is not uncommon. How much of losing a loved one, a gut-wrenching rejection, or an austere betrayal could lead to death no longer surprise us. Deep sorrow certainly takes a toll. Death is inevitable but dying from a broken heart syndrome is something that is treatable and preventable, thus, is escapable. Inopportunely, the pathobiological aspect of a broken heart syndrome has not been fully unmasked. What is known about it so far is the fact that severe emotional stress is capable of triggering the transient weakening of the heart muscle, turning the latter fatally dysfunctional.

 

 

 

Pathology of Broken heart syndrome

An illustration of left ventriculogram in (A) broken heart syndrome (arrow) and (B) normal.

(Credit: JHeuser, WikiMedia Commons under GNU Free Documentation License)

 

The medical term for broken heart syndrome is takotsubo cardiomyopathy. The condition was first described in Japan in 19901 and the name is derived from”takotsubo“, which when translated means an “octopus trap“. It is so because the left ventricle of the heart of a person with broken heart syndrome is shaped like a contraption pot used for catching octopuses. Its apex balloons or bulges out while its base remains as is. As a result, the heart with temporarily enlarged apical ventricle cannot function as it should. Consequently, blood is not pumped properly and this leads to angina (chest pain) and shortness of breath, which are symptoms typical of a heart attack. Because of this, broken heart syndrome can be easily mistaken as a heart attack. The difference lies in the arteries. A true heart attack is due to an occlusion in the artery. In broken heart syndrome, arteries are not obstructed. Also, the ventricle is only temporary dysfunctional and therefore may normalize again if given enough time to rest and recuperate.

 

 

 

Biology of a broken heart syndrome

Unraveling the mysteries of broken heart syndrome is a recent biological pursuit. Consequently, the precise mechanism is not yet clear. Experts presume a surge in adrenaline and other stress hormones since the condition is often associated with emotional stressful events (n.b. it has also been reported to happen during euphoric events, e.g. winning a lottery). The overwhelming presence of these hormones might have stunned the heart and triggered structural changes in the myocytes and/or the coronary blood vessels.2 In a study published in Psychoneuroendocrinology, researchers found that bereaved individuals have higher levels of pro-inflammatory cytokines.3

 

 

 

A person who went through a broken heart syndrome and survived it could attest how the struggle had been real. Having to go through an intensely stressful event could plausibly cloud one’s drive and enthusiasm for life. Research on the pathobiology behind broken heart syndrome is understandably new, and as such inadequate for now.

 

 

 

— written by Maria Victoria Gonzaga

 

 

 

References:
1 Akashi, Y.J., Nef, H.M,, Möllmann, H., & Ueyama, T. (2010). “Stress cardiomyopathy”. Annu. Rev. Med. 61: 271–86. Doi:10.1146/annurev.med.041908.191750
2 Harvard Women’s Health Watch. (2018). Takotsubo cardiomyopathy (broken-heart syndrome). Retrieved from https://www.health.harvard.edu/heart-health/takotsubo-cardiomyopathy-broken-heart-syndrome.
3 Fagundes, C.P., Murdock, K.W., LeRoy, A., Baameur, F., Thayer, J.F., & Heijnen, C. (2018). Spousal bereavement is associated with more pronounced ex vivo cytokine production and lower heart rate variability: Mechanisms underlying cardiovascular risk? Psychoneuroendocrinology 93:65-71. doi: 10.1016/j.psyneuen.2018.04.010.