Biology Online is a Biology blog and dictionary site that provides up to date articles on the latest developments in biological science. The Biology Online Dictionary is a completely free and open dictionary with over 60,000 biology terms. It uses the wiki concept, so that anyone can make a contribution.
Tag: climate change

Impacts of millennium drought on butterfly faunal dynamics

Butterflies are flying colored wing insects that vary in color and pattern from individual to another individual. It has wings covered with overlapping rows of scales. Most of butterflies have developed mechanisms to   avoid predators making disguise coloration blending like leaf or bark of the tree. Some releases chemicals as a defense mechanism wherein butterfly evolved to have toxic chemicals. But recent finding due to extreme weather events and trend linked to ongoing anthropogenic climate change species shifts its dynamics. Droughts occur more often in larger spatial scale which has an effect on insects. Generally, drier and warmer climatic conditions have an impact either positive or negative to insect populations. The aim of this research is to address the knowledge gap using multi-decadal dataset of 163 butterfly species. All of this butterflies experienced millennium-scale drought.

 

Impacts of droughts on Butterflies

To know the faunal dynamics, investigation of phenology, species richness and diversity with its elevation gradient has been conducted. In which linear model used to understand differential sensitivity of butterflies to climate change at low and high elevation. A decade of dataset of 163 butterfly species across elevational gradient in Northern California has been considered. Results showed that a prolonged shift towards spring flight during drought years and change in phenology is evident across elevations. It also happened that the total flight window expanded at lower elevations while at higher elevation shifted and compressed. This leads the notion that fewer overall flight days at higher sites.

 

The millennium drought in California created across site with elevation-specific changes in flight windows and species richness. This resiliency reveals that lowest elevations are less detrimental than biotic-abiotic association at higher elevations. Most of the researchers hypothesized a mismatch between trophic levels as a result of climate change. But, results of butterflies from low elevation would suggest that at consumer trophic level need not always have negative impacts. Additionally, species at lowest elevations have access to agricultural lands though irrigation does not correlate the population dynamics during drought. Thus, there is a possibility that low elevation population buffered by irrigated crops or agricultural margin during drought.

 

Indeed, that at high elevation butterflies declined in number and become sensitive to dry years with warmer temperatures. Contrary to the theory that mountains offer microclimatic refugia and adapt species for climatic changes. It has been known that high latitude environments are warming faster with negative consequences to several species. But positive or have a neutral effect for other species. Consequently, this research suggests more thorough investigation about organismal responses to extreme weather. As well as on the extent wherein different habitat type may or may not buffer species populations against climate change.

 

Source: Prepared by Joan Tura from Springer BMC Climate Changes Responses

Volume 5:3 26 January 2018

Human leptospirosis cases in Palermo Italy: Rodents and Climate

Leptospirosis is a corkscrew shaped that is known as one of the most widespread bacterial zoonoses in the world. Symptoms range from mild flu to severe multi-organ failure and fatal pulmonary hemorrhagic syndrome. In which the key factors of these diseases are from stray animals, poor sanitation, rodents, heavy rainfall and flooding. Many regions have been increasingly exposed to leptospirosis infection due to climate change, global warming, poverty and high urban density. Rodents are the main animal reservoir in urban settings mainly involved in pathogenic transmission. Moreover, a high prevalence in rodent population occurs in major cities such as in Baltimore, Tokyo and Copenhagen. In Italy sporadic cases of leptospirosis have been often related to river flooding. This study focused on molecular survey of rodents in the city of Palermo, Italy.

 

Human leptospirosis cases

Two cases in 2009 of leptospirosis in Palermo during spring and fall seasons and there were 22 locations monitored. A rodent is the main reservoir for leptospirosis related to heavy rainfall and flooding in urban streets and riverbanks. During street floods individual were potentially in contact with water contaminated by infected rodent urine. So, the risk of infection is high but because of good hygienic conditions and economic wellness severe symptoms is rare.  It is also possible that periodic exposures to serovars leave the immune competent population more resistant to infection. Other cases also in Northern Italy an elderly woman has a fatal infection after river flooding occurs.

 

Based on molecular testing leptospirosis are positive in all species of wild rodents living in almost all areas in the city. Mice and rats are the natural source for this pathogenic infection. The main common problem in Palermo, Italy is the urban street floods from heavy rains and waste accumulation. In which the city is represented by almost ten thousand stray dogs feeding on garbage. Previously, a patient was in contact with contaminated water in street flood after violent cloudburst. Waste collection also is one of the problem in Palermo that eventually facilitates the increased of rodent population.

 

High prevalence of leptospirosis occurs in mild wet climate, flooding of urban streets and socio-economic problems. Other Italian cities has presence of simultaneous risk factors for leptospirosis, and thus, a major concern from this underestimated zoonosis should be considered by public health authorities and clinicians particularly for elderly and immune-compromised individuals. However, severe symptomatic cases are referred to hospitals and the true prevalence of infection is probably not evaluated.

 

Source: Prepared by Joan Tura from Journal of Infection and Public Health

Volume 11, Issue 2, March–April 2018, Pages 209-214

 

Climate change, ethics and sustainability: An innovative approach

Climate change is a phenomenon nowadays that is well studied in the field of natural sciences. The aim of this article is to contribute an innovative approach and ethical sustainability to tackle possible solutions on climate change. It is also focused on how to synthesize different approaches on areas being affected. Hence, human being is included in the basic variable of change in the framework of fundamental ecology. That is why it is important to consider a broader view of climate change from historical perspective.

 

Global warming

The increase in Earth’s average temperatures at different latitudes is clear evidence that human action influence the process. The elimination of greenhouse gas particularly carbon dioxide and other gases which is known to increase temperature need to be address. Also the preservation of plant and animals as well as the biodiversity of the ocean and other ecosystems requires attention. Global warming on the other hand increased temperature, sea level rise, acidification and deterioration of habitat draws awareness of human being conditions.

Climate change: a broader vision

Science in different field conducted research study about the phenomenon of climate change. These includes geology particularly stratigraphy that focus on the study of stratified sedimentary, metamorphic and volcanic rocks.The archaeological stratigraphy that deals with the strata of soil according to age. In which the older is found at the deepest portion and the younger one is on the top. Moreover, paleontology is one of the considerations wherein the remains of living existence have been recorded through time.

The concept of sustainability

Sustainability in broader concept pertains to the ability to endure satisfaction of the present needs without compromising the future generation. It is a feature by which system or element remain functional and active over time. Resources can be used responsibly to ensure the balance in the economy, environment and social welfare.Climate change is a global problem implicating many countries especially those that are affected directly.

 

Therefore, the approach on climate change needs to consider the anthropological, geological, paleontological and ethical perspectives. Global warming is the key factor to resolve this phenomenal problem, since nature does not have an infinite resources. It does not have unlimited capacity to regenerate as a results, all living existence pay the price for exploiting the natural resources.

 

Sources: Prepared by Joan Tura from the Journal of Innovation and Knowledge,1 February 2018.