Biology Online is a Biology blog and dictionary site that provides up to date articles on the latest developments in biological science. The Biology Online Dictionary is a completely free and open dictionary with over 60,000 biology terms. It uses the wiki concept, so that anyone can make a contribution.
Tag: antibiotic resistance

First Video Proof That Could Explain Antibiotic-Resistant Superbug Bacteria

Amidst the battle for supremacy, our army of immune cells relentlessly wages war against various pathogens, especially superbug bacteria. Despite the pool of ample winnings, our body still experiences defeat from time to time. We succumb to diseases as the war reels its favor towards the tenacious pathogens. Of course, we cannot allow our immune defense to be utterly defeated. Otherwise, we’d be dead. As bacteria advance by taking over much space and nutrients inside our body, we get external help through antimicrobial chemicals that scientists continue to contrive.  Unfortunately, antibiotic resistance has surfaced and turned certain strains of bacteria into a superbug – one that has become resistant to the effects of antibiotics.




Chemical warfare prior to the rise of a superbug

Antimicrobial chemicals, particularly antibiotics, came into existence as chemicals that were strategically designed and produced with the intent of killing pesky bacteria. In 1928, penicillin was discovered, which led to its use as the first natural antibiotic capable of undermining a spectrum of bacteria, if not by killing, by inhibiting their growth. Its role as a wonder drug against various bacteria caused Alexander Fleming to receive a duly recognition by winning a Nobel prize award for its discovery. Soon, more antibacterial agents came up to our defense. Antibiotics, such as penicillin and cephalosporin, destroy bacterial cell wall whereas polymyxins target bacterial cell membrane. Rifamycin, quinolones, sulfonamides, and the likes interfere with the enzymes essential to bacteria. Once again, we gained an upper hand.




Bacteria resisting: the rise of a superbug

A Scanning Electron Microscope (SEM) image of cells of the bacteria Vibrio tasmaniensis(Credit: Lewis Lab at Northeastern University. Image created by Anthony D’Onofrio, William H. Fowle, Eric J. Stewart and Kim Lewis)


While we thought we finally came up with a powerful weapon, the bacteria conjured up an amazing strategy to work in their favour — antibiotic resistance. Some of them started to morph. They evolved and mutated into new strains referred to as superbug. They became capable of resisting the drugs’ antimicrobial effects. One of their strategies is to produce β-lactamases that destroy the structure of β-lactam antibiotics (e.g. penicillin and cephalosporin). The bacteria that evolved into superbug organisms did not just live; they thrived. They multiplied and passed on to the next generation the features that could withstand a number of antibiotics.




DNA uptake by superbug bacteria

Apart from the vertical gene transfer of genes, antibiotic resistance could also be transferred through horizontal gene transfer. It is a mechanism whereby genes are taken up or transposed from one species to another, and one of the possible explanations for the rise of superbug bacteria. DNA uptake by a bacterial cell was captured for the first time in a video by a team of scientists from Indiana University. In the video1, it shows how a bacterial cell takes up DNA fragments from dead bacterial cells through its pilus. Like a harpoon, the pilus was used by the bacterium, Vibrio cholera, to catch and reel a stray DNA fragment, and then bring it inside the bacterial cell via the same pore on its cell wall. It, then, incorporates the DNA into its own genome. Accordingly, this is probably one of the mechanisms for a bacterium to turn into a superbug.

First video evidence of DNA uptake by Vibrio cholera.
(Video credit: Ankur Dalia, Indiana University, uploaded on YouTube by Group IU Biology News)


A researcher from the team, Courtney Ellison, recounted, “The size of the hole in the outer membrane is almost the exact width of a DNA helix bent in half… If there weren’t a pilus to guide it, the chance the DNA would hit the pore at just the right angle to pass into the cell is basically zero.” It appears that the pilus takes a crucial role in horizontal gene transfer. If left to chance the DNA fragment would not easily get inside the cell since the pore was too small for it to fit. Through horizontal gene transfer, those that were once sensitive to the antibiotic could later become superbug bacteria as well. As Ankur Dalia, another researcher from the same team, pointed out, “Horizontal gene transfer is an important way that antibiotic resistance moves between bacterial species….” The video that the research team captured for the first time could explain how antibiotic resistance can be acquired from one superbug bacterial species to another.




The battle is far from over. The antibiotic resistance already raised global concerns as it has rendered certain antibiotics ineffective. Pathogenic superbug bacteria have successfully armed themselves with genes that could neutralize antibiotic effects. Fortunately, scientists do not waver in determining the strategies that superbug bacteria exploit.  The recent discovery of the way by which bacteria employ to make them antibiotic-resistant superbug strains could lead to better therapeutic strikes that could counter them, hopefully, with ample success.




— written by Maria Victoria Gonzaga




1 Indiana University. (2018). IU scientists watch bacteria ‘harpoon’ DNA to speed their evolution. Retrieved from