table of contents table of contents

This paper assessed the reliability of this simple, freely available software package …

Home » Biology Articles » Conservation Biology » Spot the match – wildlife photo-identification using information theory » Discussion

- Spot the match – wildlife photo-identification using information theory

Consistent, non-intrusive and ethically acceptable methods of mark-recapture are essential for estimating reliable demographic rates for wildlife populations, particularly for threatened species [29,33]. Photo-identification has become a widely accepted method of mark-recapture that has been empirically tested over a broad range of species [e.g., [16,17,34]]. Despite the advantages of this technique, there is the potential for large photographic databases to compromise the reliability of matches made by eye, which can subsequently jeopardize reliable estimates of population demographics. This problem has been largely overcome for several species by computer-aided image-matching algorithms that match various unique features of individuals [20,28,35-37]. However, most of these programs have limited applications, may be complex to operate, or are not freely available.

Software inaccessibility and the corresponding isolation of potentially useful photographic datasets will likely compromise parameter estimation and lead to higher uncertainty for calculated vital rates. For example, centralized photographic catalogues are common in the field of cetacean research, with new photographs from observers being compared to those previously obtained and the results sent to collaborators worldwide [38]. This type of data sharing for large, long-lived and wide-ranging species is an essential component of effective population management. Open-source matching software coupled with matching algorithms exploiting the power of information theory will make this process more efficient and less prone to error. Our main objective was to provide a procedure for incorporating full matching uncertainty into the photo-identification process using a freely available and simple software package. Despite the relatively low number of photographs with which we tested our approach, the performance of the system is satisfactory from the perspective of estimating reliable demographic information for a host of wildlife species.

Our assessment of a simple, freely available spot pattern-matching software package coupled with an information-theoretic incorporation of matching uncertainty was particularly effective for whale sharks given that their natural spot patterns were ideally suited for assessment using the I3S program. Validation of I3S matches using the Information Criterion algorithm provided a threshold w1 for known matched pairs of approximately 0.2, below which w1 for non-matched pairs fell. Known matched pairs not matched by I3S, or that were matched with low (i.e., w1, likely resulted from poor clarity or high angles of yaw. This emphasizes the need to select images of the highest quality for matching purposes [39]. The validation process is necessary with most computer-aided matching algorithms because this alleviates much of the subjectivity associated with the final stage of matching. In the case of whale sharks, the 0.2 threshold proved to be a robust and conservative measure of certainty, but the particular value of the threshold will likely vary among species. Nonetheless, in the absence of validation data we suggest that using this threshold value is a good first approximation.

The validation stage of photographic matching can be further confirmed by using genetic tagging to identify individuals [15], and this approach is proliferating in mark-recapture studies. Genetic tagging also has the advantage of providing additional individual- and population-level information (e.g., genetic diversity, parent-offspring relationships, etc.) [40]. Because whale sharks are highly photographed and tissue sampling may be difficult, it is unlikely that genetic tagging will replace photographic identification in the near future, even though genetic information will provide further validation of photographic matching success.

The open-source program I3S [32] was effective at confirming past matches made by eye in the majority of instances. Images that were successfully confirmed using our Information Criterion algorithm received relatively low w1 and ER1 overall, most likely as a result of a considerably smaller sample size than that used for validation. I3S was also a useful tool for identifying image matches that were assigned incorrectly (i.e., both false positives and false negatives). When matching whale shark patterns by eye, the observer generally does not focus on the spot pattern per se; rather, attention is usually paid to the intricate lines and whirls (see Fig. 1a) on the flank of the shark. As such, I3S provides an unbiased method of matching natural markings that is relatively immune to user subjectivity.

We found strong evidence that horizontal angle of subjects within images affects the ability of the I3S algorithm to make reliable matches. As the horizontal angle of subjects in images increases, the matching likelihood decreases. Angles of yaw up to 30° compromise the matching process even though many of these images were still matched correctly. Conversely, images with angles of yaw ≥40° will more than likely be incorrectly assigned. Due to the linear algorithm used by I3S to match spot patterns it is important to use only those photos with as little contortion of the reference area as possible. Likewise, the number of spots annotated in fingerprints can also potentially affect the I3S matching process. The higher the number of spot pairs matched, the lower the I3S score and hence, the higher the matching certainty. This corroborates similar findings from a study of Carcharias taurus [31] and emphasizes the benefit of using information-theoretic measures of matching parsimony because the updated algorithm takes relative match uncertainty into account.

The number of suitable images from our database for use in I3S was considerably reduced due to the absence of reference points, poor image quality and oblique angles of subjects in many images. The rejection rate is inflated particularly by the use of photographs taken without the explicit aim of photographic matching because many are derived from ecotourism operations. However, the efficiency and reliability of matching with I3S more than compensated for the reduced sample size. The number and size of images in an I3S database can potentially slow down the program's operating speed; therefore, it is ideal to scale down the size of photographs and only include the best image of a particular animal. In addition to horizontal angle, roll and pitch of sharks in images may affect the matching process. Pitch seems likely to be only a minor problem because digital photos can be rotated so that the animal is aligned with the horizontal. We had few images of the same individual at varying angles of roll, so we were unable to examine this potential problem.

rating: 0.00 from 0 votes | updated on: 25 Apr 2007 | views: 5996 |

Rate article: