table of contents table of contents

Home » Biology Articles » Bioengineering » Soluble, insoluble and geometric signals sculpt the architecture of mineralized tissues » References

- Soluble, insoluble and geometric signals sculpt the architecture of mineralized tissues

  1. Reddi A.H., Regulation of cartilage and bone differentiation by bone morphogenetic proteins, Curr. Opin. Cell Biol., 4: 850-855, 1992
  2. Ripamonti U., Ramoshebi L.N., Patton J., Matsaba, T, Teare J., Renton L., Soluble Signals and Insoluble Substrata: Novel Molecular Cues Instructing the Induction of Bone. In: Massaro E. J., Rogers J. M., eds., The Skeleton. Humana Press, Totowa, New Jersey, 2004, pp. 217-227
  3. Reddi A.H., Symbiosis of biotechnology and biomaterials: Applications in tissue engineering of bone and cartilage. J. Cell. Biochem., 56: 192-195, 1994
  4. Reddi A.H., BMPs: Action in flesh and bone. Nat. Med., 3: 837-838, 1997
  5. Reddi A.H., Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat. Biotechnol., 16: 247252, 1998
  6. Reddi A.H., Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng., 6:351-359, 2000
  7. Ripamonti U., Ma S., Cunningham N., Yeates L., Reddi A. H., Initiation of bone regeneration in adult baboons by osteogenin, a bone morphogenetic protein. Matrix, 12: 369380, 1992.
  8. Ripamonti U., Duneas N., Tissue morphogenesis and regeneration by bone morphogenetic proteins. Plast. Reconstr. Surg., 101: 227-239, 1998
  9. Ripamonti U., Ramoshebi L.N., Matsaba T., Tasker J., Crooks J., Teare J., Bone induction by BMPs/OPs and related family members in primates. The critical role of delivery systems. J. Bone Joint Surg. Am., 83-A: S1 116-SI 127, 2001
  10. Ripamonti U., Osteogenic Proteins of the TGF-β Superfamily. In: Henry H. L., Norman A. W., eds., Encyclopedia of Hormones, Academic Press, USA, 2003, pp. 80-86
  11. Ripamonti U., Tissue engineering of bone by novel substrata instructing gene expression during the de novo bone formation, Science in Africa, 2002
  12. Ripamonti U., Ramoshebi L.N., Patton J., Matsaba T., Teare J., Renton L. Sculpturing the architecture of mineralized tissues: tissue engineering of bone from soluble signals to smart siomimetic matrices. In: RH Müller R. H., Kayser O., eds., Pharmaceutical Biotechnology. Wiley-VCH 2004; Chapter16, pp. 281-297
  13. Wozney J.M., Rosen V., Celeste A.J., Mitsock L.M., Whitters M.J., Kritz R.W., Hewick R.M., Wang E.A. Novel regulators of bone formation: Molecular clones and activities. Science, 242: 1528-1534, 1988
  14. Wozney J.M., The bone morphogenetic protein family and osteogenesis. Mol. Reprod. Dev., 32: 160-167, 1992

  15. Carrington J.L., Reddi A.H., Parallels between development of embryonic and matrix-induced endochondral bone. Bioessays, 13: 403-408, 1991

  16. Urist M.R., DeLange R.J., Finerman G.A.M., Bone cell differentiation and growth factors. Science, 220: 680-686, 1983

  17. Turing A.M., The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., 237: 37, 1952

  18. Sampath T.K., Rashka K.E., Doctor J.S., Tucker R.F., Hoffmann F.M., Drosophila TGF-β superfamily proteins induce endochondral bone formation in mammals. Proc. Natl. Acad. Sci. USA, 90: 6004-6008, 1993

  19. Hotten G.C., Matsumoto T., Kimura M., Bechtold R.F., Kron R., Ohara T., Tanaka H., Satoh Y., Okazaki M., Shirai T., Pan H., Kawai S., Pohl J.S., Kudo A., Recombinant human growth/differentiation factor 5 stimulates mesenchyme aggregation and chondrogenesis responsible for the skeletal development of limbs. Growth Factors, 13: 65-74, 1996

  20. Ripamonti U., Duneas N., van den Heever B., Bosch C., Crooks J., Recombinant transforming growth factor-β1 induces endochondral bone in the baboon and synergizes with recombinant osteogenic protein-1 (bone morphogenetic protein-7) to initiate rapid bone formation, J. Bone Miner. Res., 12: 1584-1595, 1997 
  21. Ripamonti U., Crooks J., Matsaba T., Tasker J., Induction of endochondral bone formation by recombinant human transforming growth factor-β2 in the baboon (Papio ursinus). Growth Factors, 17: 269-285, 2000
  22. Duneas N., Crooks J., Ripamonti U., Transforming growth factor-β1: Induction of bone morphogenetic protein genes expression during endochondral bone formation in the baboon, and synergistic interaction with osteogenic protein1 (BMP-7). Growth Factors, 15: 259-277, 1998
  23. Ripamonti U., Teare J., Matsaba T., Renton L., Site, tissue and organ specificity of endochondral bone induction and morphogenesis by TGF-beta isoforms in the primate Papio ursinus. Proceedings of the 2001 FASEB Summer Research Conference, Tucson, Arizona USA, 2001
  24. Roberts A. B., Sporn M. B., Assoian R. K., Smith J. M., Roche N. S., Wakefield L. M., Heine U. I., Liotta L. A., Falanga V., Kerhl J. H., Fauci A. S. Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA, 83: 4167-4171, 1986
  25. Sampath T. K., Muthukumaran N., Reddi A. H. Isolation of osteogenin, an extracellular matrix-associat- ed, bone-inductive protein, by heparin affinity chro- matography. Proc. Natl. Acad. Sci. USA, 84: 7109-7113, 1987
  26. Bentz H., Nathan R. M., Rosen D., Armstrong R. M., Thompson A. Y., Segarini P. R., Matthews M. C., Dasch J. R., Piez K. A., Seyedin S. M., Purification and characterisation of a unique factor from bovine bone. J. Biol. Chem., 264: 20805-20810, 1989
  27. Hammonds R. G., Schwall R., Dudley A., Berkemeier L., Lai C., Lee J., Cunningham N., Reddi A. H., Wood W., Mason A. J., Bone inducing activityof mature BMP- 2b produced from a hybrid BMP-2a/2b precursor. Mol. Endocrinol., 5: 149-155, 1991
  28. Ripamonti U., Bosch C., van den Heever B., Duneas N., Melsen B., Ebner R., Limited chondro-osteogenesis by recombinant human transforming growth factor β1 in calvarial defects in adult baboons (Papio ursinus). J. Bone Miner. Res., 11: 938-945, 1996
  29. Wakefield L. M., Smith D. M., Masui T., Harris C. C., Sporn M. B., Distribution and modulation of the cellular receptor for transforming growth factor-beta. J. Cell Biol., 105: 965-975, 1987
  30. Shi Y., Massagué J., Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 113: 685-700, 2003
  31. Imamura T., Takase M., Nishihara A., Oeda E., Hanai J., Kawabata M., Myazono K., Smad6 inhibits sig- nalling by the TGF-β superfamily. Nature, 389: 622-626, 1997
  32. Nakao A., Afrakhte M., Morèn A., Nakayama T., Christian J. L., Heuchel R., Itoh S., Kawabata M., Heldin N. -E., Heldin C. -H., ten Dijke P., Identification of Smad7, a TGFβ-inducible antagonist of TGF-β sig- nalling. Nature, 389: 631-635, 1997
  33. Whitman M., Feedback from inhibitory SMADs. Nature, 389: 549-551, 1997
  34. Myazono K., ten Dijke P., Heldin C. -H. TGF-β signal- ing by Smad proteins. Adv. Immunol., 75: 115-157, 2000
  35. Ripamonti U., van den Heever B., Crooks J., Tucker M. M., Sampath T. K., Rueger D. C., Reddi A. H., Long term evaluation of bone formation by osteogenic protein-1 in the baboon and relative efficacy of bone- derived bone morphogenetic proteins delivered by irradi- ated xenogeneic collagenous matrices. J. Bone Miner. Res., 15: 1798-1809, 2000
  36. Jin D. M., Takita H., Kohgo T., Atsumi K., Itoh H., Kuboki Y., Effects of geometry of hydroxyapatite as a cell substratum in BMP-induced ectopic bone formation.
  37. Kuboki Y., Takita H., Tsuruga E., Inoue M., Murata M., Nagai N., Dohi Y., Ohgushi H. BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures. J. Biomed. Mater. Res., 39: 190- 199, 1998
  38. Reddi A. H. Bone matrix in the solid state: Geometric influence on differentiation of fibroblasts. Adv. Biol. Med. Phys., 15: 1-18, 1974
  39. Ripamonti U., Ma S., Reddi A. H., The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix, 12: 202-212, 1992
  40. Ripamonti U., Crooks J., Kirkbride A. N. Sintered porous hydroxyapatites with intrinsic osteoinductive activity: Geometric induction of bone formation. S. Afr. J. Sci., 95: 335-343, 1999
  41. Ripamonti U., Crooks J., Intrinsic osteoinductive activity of smart biomaterials with inductive and morphogenetic shape memory geometries. Abstract 7th International Academy of Shape Memory Material for Medical Use (I- ASMU) Montreal, Canada, 2000
  42. Sampath T. K., Reddi A. H. Importance of geometry of the extracellular matrix in endochondral bone differentiation. J. Cell Biol., 98: 2192-2197, 1984
  43. van Eeden S., Ripamonti U., Bone differentiation in porous hydroxyapatite is regulated by the geometry of the substratum: Implications for reconstructive craniofacial surgery. Plast. Reconstr. Surg., 93: 959-966, 1994
  44. Ripamonti U., van den Heever B., van Wyk J., Expression of the osteogenic phenotype in porous hydrox- yapatites implanted extraskeletally in baboons. Matrix, 13: 491-502, 1993
  45. Ripamonti U., Duneas N., Tissue engineering of bone by osteoinductive biomaterials. Mater. Res. Soc. Bull., 21: 36- 39, 1996
  46. Thomas M.E., Richter P.W., van Deventer T., Crooks J., Ripamonti U., Macroporous synthetic hydroxyapatite bio- ceramics for bone substitute application, S. Afr. J. Sci., 95: 359-362, 1999
  47. Ripamonti U., Smart biomaterials with intrinsic osteo- inductivity: geometric control of bone differentiation. In: Davies J. E. (ed) Bone Engineering, EM2 Corporation, Toronto, Canada, 2000, pp. 215-222
  48. Khouri R.K., Koudsi B., Reddi A.H., Tissue transforma- tion into bone in vivo. A potential practical application, JAMA, 266: 1953-1955, 1991
  49. Ripamonti U., Crooks J., Rueger D.C., Induction of bone formation by recombinant human osteogenic protein-1 and sintered porous hydroxyapatite in adult primates. Plast. Reconst. & Surg., 107: 977-988, 2001
  50. Parfitt A.M., Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone, J. Cell. Biochem., 55: 273-286, 1994
  51. Parfitt A.M., A new model for the regulation of bone resorption, with particular reference to the effects of biphos- phonates, J. Bone Miner. Res., 11: 150-159, 1996
  52. Manolagas S.C., Jilka L., Bone marrow, cytokines, and bone remodelling. Emerging insights into the pathophysiol- ogy of osteoporosis, New Engl. J. Med., 332: 305-311, 1955

rating: 5.00 from 1 votes | updated on: 21 Sep 2006 | views: 11946 |

Rate article: