table of contents table of contents

Rhizopus oryzae glucoamylase (RoGA) consists of three domains: an amino (N)-terminal …

Home » Biology Articles » Biochemistry » Carbohydrate Biochemistry » Role of the linker region in the expression of Rhizopus oryzae glucoamylase » References

- Role of the linker region in the expression of Rhizopus oryzae glucoamylase

  1. Hiromi K, Hamauzu ZI, Takahashi K, Ono S: Kinetic studies on gluc-amylase. II. Competition between two types of substrate having alpha-1,4 and alpha-1,6 glucosidic linkage.

    J Biochem (Tokyo) 1966, 59(4):411-418.

  2. Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B: Glucoamylase: structure/function relationships, and protein engineering.

    Biochim Biophys Acta 2000, 1543(2):275-293.

  3. Norouzian D, Akbarzadeh A, Scharer JM, Moo Young M: Fungal glucoamylases.

    Biotechnol Adv 2006, 24(1):80-85.

  4. Sakai Y, Akiyama M, Kondoh H, Shibano Y, Kato N: High-level secretion of fungal glucoamylase using the Candida boidinii gene expression system.

    Biochim Biophys Acta 1996, 1308(1):81-87.

  5. Manjunath P, Shenoy BC, Raghavendra Rao MR: Fungal glucoamylases.

    J Appl Biochem 1983, 5(4-5):235-260.

  6. Coutinho PM, Reilly PJ: Glucoamylase structural, functional, and evolutionary relationships.

    Proteins 1997, 29(3):334-347.

  7. Mertens JA, Skory CD: Isolation and Characterization of Two Genes That Encode Active Glucoamylase Without a Starch Binding Domain from Rhizopus oryzae.

    Curr Microbiol 2007, 54(6):426-426.

  8. Aleshin A, Golubev A, Firsov LM, Honzatko RB: Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-A resolution.

    J Biol Chem 1992, 267(27):19291-19298.

  9. Chen HM, Ford C, Reilly PJ: Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation.

    Biochem J 1994, 301(Pt 1):275-281.

  10. Libby CB, Cornett CA, Reilly PJ, Ford C: Effect of amino acid deletions in the O-glycosylated region of Aspergillus awamori glucoamylase.

    Protein Eng 1994, 7(9):1109-1114.

  11. Semimaru T, Goto M, Furukawa K, Hayashida S: Functional analysis of the threonine- and serine-rich Gp-I domain of glucoamylase I from Aspergillus awamori var. kawachi.

    Appl Environ Microbiol 1995, 61(8):2885-2890.

  12. Chen L, Coutinho PM, Nikolov Z, Ford C: Deletion analysis of the starch-binding domain of Aspergillus glucoamylase.

    Protein Eng 1995, 8(10):1049-1055.

  13. Sorimachi K, Le Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP: Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin.

    Structure 1997, 5(5):647-661.

  14. Sauer J, Christensen T, Frandsen TP, Mirgorodskaya E, McGuire KA, Driguez H, Roepstorff P, Sigurskjold BW, Svensson B: Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger.

    Biochemistry 2001, 40(31):9336-9346.

  15. Paldi T, Levy I, Shoseyov O: Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    Biochem J 2003, 372(Pt 3):905-910.

  16. Goto M, Shinoda N, Oka T, Sameshima Y, Ekino K, Furukawa K: Thr/Ser-rich domain of Aspergillus glucoamylase is essential for secretion.

    Biosci Biotechnol Biochem 2004, 68(4):961-963.

  17. Liu SH, Chou WI, Sheu CC, Chang MD: Improved secretory production of glucoamylase in Pichia pastoris by combination of genetic manipulations.

    Biochem Biophys Res Commun 2005, 326(4):817-824.

  18. Liu SH, Chou WI, Lin SC, Sheu CC, Chang MD: Molecular genetic manipulation of Pichia pastoris SEC4 governs cell growth and glucoamylase secretion.

    Biochem Biophys Res Commun 2005, 336(4):1172-1180.

  19. Tanaka Y, Ashikari T, Nakamura N, Kiuchi N, Shibano Y, Amachi T, Yoshizumi H: Comparison of amino acid sequences of three glucoamylases and their structure-function relationships.

    Agric Biol Chem 1986, 50:965-969.

  20. Cornett CA, Fang TY, Reilly PJ, Ford C: Starch-binding domain shuffling in Aspergillus niger glucoamylase.

    Protein Eng 2003, 16(7):521-529.

  21. Rodriguez-Sanoja R, Oviedo N, Sanchez S: Microbial starch-binding domain.

    Curr Opin Microbiol 2005, 8(3):260-267.

  22. Chou WI, Pai TW, Liu SH, Hsiung BK, Chang MD: The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding.

    Biochem J 2006, 396(3):469-477.

  23. Liu YN, Lai YT, Chou WI, Chang MD, Lyu PC: Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase.

    Biochem J 2007, 403(1):21-30.

  24. Goto M, Tsukamoto M, Kwon I, Ekino K, Furukawa K: Functional analysis of O-linked oligosaccharides in threonine/serine-rich region of Aspergillus glucoamylase by expression in mannosyltransferase-disruptants of yeast.

    Eur J Biochem 1999, 260(3):596-602.

  25. Janecek S, Svensson B, MacGregor EA: Relation between domain evolution, specificity, and taxonomy of the alpha-amylase family members containing a C-terminal starch-binding domain.

    Eur J Biochem 2003, 270(4):635-645.

  26. Henrissat B: A classification of glycosyl hydrolases based on amino acid sequence similarities.

    Biochem J 1991, 280(Pt 2):309-316.

  27. Machovic M, Svensson B, MacGregor EA, Janecek S: A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21.

    FEBS J 2005, 272(21):5497-5513.

  28. Machovic M, Janecek S: Starch-binding domains in the post-genome era.

    Cell Mol Life Sci 2006, 63(23):2710-2724.

  29. Denman S, Xue GP, Patel B: Characterization of a Neocallimastix patriciarum cellulase cDNA (celA) homologous to Trichoderma reesei cellobiohydrolase II.

    Appl Environ Microbiol 1996, 62(6):1889-1896.

  30. Howard MB, Ekborg NA, Taylor LE, Hutcheson SW, Weiner RM: Identification and analysis of polyserine linker domains in prokaryotic proteins with emphasis on the marine bacterium Microbulbifer degradans.

    Protein Sci 2004, 13(5):1422-1425.

  31. Dell A, Morris HR: Glycoprotein structure determination by mass spectrometry.

    Science 2001, 291(5512):2351-2356.

  32. NetNGlyc: []

  33. Ash J, Dominguez M, Bergeron JJ, Thomas DY, Bourbonnais Y: The yeast proprotein convertase encoded by YAP3 is a glycophosphatidylinositol-anchored protein that localizes to the plasma membrane.

    J Biol Chem 1995, 270(35):20847-20854.

  34. O'Leary JM, Radcliffe CM, Willis AC, Dwek RA, Rudd PM, Downing AK: Identification and removal of O-linked and non-covalently linked sugars from recombinant protein produced using Pichia pastoris.

    Protein Expr Purif 2004, 38(2):217-227.

  35. Jentoft N: Why are proteins O-glycosylated?

    Trends Biochem Sci 1990, 15(8):291-294.

  36. NetOGlyc: []

  37. Maley F, Trimble RB, Tarentino AL, Plummer TH Jr.: Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases.

    Anal Biochem 1989, 180(2):195-204.

  38. Zhang H, Li XJ, Martin DB, Aebersold R: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry.

    Nat Biotechnol 2003, 21(6):660-666.

  39. De Praeter CM, Gerwig GJ, Bause E, Nuytinck LK, Vliegenthart JF, Breuer W, Kamerling JP, Espeel MF, Martin JJ, De Paepe AM, Chan NW, Dacremont GA, Van Coster RN: A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency.

    Am J Hum Genet 2000, 66(6):1744-1756.

  40. Panda A, Elankumaran S, Krishnamurthy S, Huang Z, Samal SK: Loss of N-linked glycosylation from the hemagglutinin-neuraminidase protein alters virulence of Newcastle disease virus.

    J Virol 2004, 78(10):4965-4975.

  41. Belshaw NJ, Williamson G: Production and purification of a granular-starch-binding domain of glucoamylase 1 from Aspergillus niger.

    FEBS Lett 1990, 269(2):350-353.

  42. Iefuji H, Chino M, Kato M, Iimura Y: Raw-starch-digesting and thermostable alpha-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing.

    Biochem J 1996, 318(Pt 3):989-996.

  43. Imperiali B, Rickert KW: Conformational implications of asparagine-linked glycosylation.

    Proc Natl Acad Sci USA 1995, 92(1):97-101.

  44. Haraguchi M, Yamashiro S, Furukawa K, Takamiya K, Shiku H, Furukawa K: The effects of the site-directed removal of N-glycosylation sites from beta-1,4-N-acetylgalactosaminyltransferase on its function.

    Biochem J 1995, 312(Pt 1):273-280.

  45. Yanez E, Carmona TA, Tiemblo M, Jimenez A, Fernandez-Lobato M: Expression of the Schwanniomyces occidentalis SWA2 amylase in Saccharomyces cerevisiae: role of N-glycosylation on activity, stability and secretion.

    Biochem J 1998, 329(Pt 1):65-71.

  46. Chen DC, Yang BC, Kuo TT: One-step transformation of yeast in stationary phase.

    Curr Genet 1992, 21(1):83-84.

  47. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.

    Nature 1970, 227(5259):680-685.

rating: 1.00 from 2 votes | updated on: 15 Nov 2007 | views: 12733 |

Rate article: