- Molecular Machinery and Mechanism of Cell Secretion

Hörber JKH, Miles MJ. Scanning probe evolution in biology. Science 302:1002–1005, 2003. Anderson LL. Discovery of a new cellular structure-the porosome: elucidation of the molecular mechanism of secretion. Cell Biol Int 28:3–5, 2004. Schneider SW, Sritharan KC, Geibel JP, Oberleithner H, Jena BP. Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma pembrane structures involved in exocytosis. Proc Natl Acad Sci U S A 94:316–321, 1997. Cho SJ, Quinn AS, Stromer MH, Dash S, Cho J, Taatjes DJ, Jena BP. Structure and dynamics of the fusion pore in live cells. Cell Biol Int 26:35–42, 2002. Cho SJ, Jeftinija K, Glavaski A, Jeftinija S, Jena BP, Anderson LL. Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology 143:1144–1148, 2002. Cho SJ, Wakade A, Pappas GD, Jena BP. New structure involved in transient membrane fusion and exocytosis. Ann N Y Acad Sci 971:254–256, 2002. Jena BP, Cho SJ, Jeremic A, Stromer MH, Abu-Hamdah R. Structure and composition of the fusion pore. Biophys J 84:1337–1343, 2003. Jeremic A, Kelly M, Cho SJ, Stromer MH, Jena BP. Reconstituted fusion pore. Biophys J 85:2035–2043, 2003. Cho SJ, Kelly M, Rognlien KT, Cho J, Hoerber JKH, Jena BP. SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophys J 83:2522–2527, 2002. Cho SJ, Cho J, Jena BP. The number of secretory vesicles remains unchanged following exocytosis. Cell Biol Int 26:29–33, 2002. Jena BP. Fusion pore in live cells. NIPS 17:219–222, 2002. Jena BP. Fusion pore: structure and dynamics. J Endo. 176:169–174, 2003. Jena BP. Exocytotic fusion: total or transient. Cell Biol Int 21:257–259, 1997. Jena BP. Discovery of the porosome: revealing the molecular mechanism of secretion and membrane fusion in cells. J Cell Mol Med 8:1–21, 2004. Cho WJ, Jeremic A, Rognlien KT, Zhvania MG, Lazrishvili I, Tamar B, Jena BP. Structure, isolation, composition and reconstitution of the neuronal fusion pore. Cell Biol Int 28:699–708, 2004. Kelly M, Cho WJ, Jeremic A, Abu-Hamdah R, Jena BP. Vesicle swelling regulates content expulsion during secretion. Cell Biol Int 28:709–716, 2004. Jeremic A, Kelly M, Cho WJ, Cho SJ, Horber JKH, Jena BP. Calcium drives fusion of SNARE-apposed bilayers. Cell Biol Int 28:19–31, 2004. Jeremic A, Cho WJ, Jena BP. Membrane fusion: what may transpire at the atomic level. J Biol Phys Chem 4:139–142, 2004. Jena BP, Schneider SW, Geibel JP, Webster P, Oberleithner H, Sritharan KC. Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc Natl Acad Sci U S A 94:13317–13322, 1997. Cho SJ, Sattar AK, Jeong EH, Satchi M, Cho JA, Dash S, Mayes MS, Stromer MH, Jena BP. Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci U S A 99:4720–4724, 2002. Abu-Hamdah R, Cho WJ, Cho SJ, Jeremic A, Kelly M, Ilie AE, Jena BP. Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex. Cell Biol Int 28:7–17, 2004. Taraska JW, Perrais D, Ohara-Imaizumi M., Nagamatsu S, Almers W. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A 100:2070–2075, 2003. Aravanis AM, Pyle JL, Tsien RW. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423:643–647, 2003. Tojima T, Yamane Y, Takagi H, Takeshita T, Sugiyama T, Haga H, Kawabata K, Ushiki T, Abe K, Yoshioka T, Ito E. Three-dimensional characterization of interior structures of exocytotic apertures of nerve cells using atomic force microscopy. Neuroscience 101:471–481, 2000. Thorn P, Fogarty KE, Parker I. Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity. Proc Natl Acad Sci U S A 101:6774–6779, 2004. Lee JS, Mayes MS, Stromer MH, Scanes CG, Jeftinija S, Anderson LL. Number of secretory vesicles in growth hormone cells of the pituitary remains unchanged after secretion. Exp Biol Med 229:291–302, 2004. Fix M, Melia TJ, Jaiswal JK, Rappoport JZ, You D, Söllner TH, Rothman JE, Simon SM. Imaging single membrane fusion events mediated by SNARE proteins. Proc Natl Acad Sci U S A 101:7311–7316, 2004. Binnig G, Quate CF, Gerber CH. Atomic force microscope. Phys Rev Lett 56:930–933, 1986. Weber T, Zemelman BV, McNew JA, Westerman B, Gmachi M, Parlati F, Söllner TH, Rothman JE. SNARE pins: minimal machinery for membrane fusion. Cell 92:759–772, 1998. Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK. An atomic resolution atomic force microscope implemented using an optical lever. J Appl Physiol 65:164–167, 1989. Monck JR, Oberhauser AF, Fernandez JM. The exocytotic fusion pore interface: a model of the site of neurotransmitter release. Mol Memb Biol 12:151–156, 1995. Gaisano HY, Sheu L, Wong PP, Klip A, Trimble WS. SNAP-23 is located in the basolateral plasma membrane of rat pancreatic acinar cells. FEBS Lett 414:298–302, 1997. Bennett V. Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev 70:1029–1065, 1990. Faigle W, Colucci-Guyon E, Louvard D, Amigorena S, Galli T. Vimentin filaments in fibroblasts are a reservoir for SNAP-23, a component of the membrane fusion machinery. Mol Biol Cell 11:3485–3494, 2000. Goodson HV, Valetti C, Kreis TE. Motors and membrane traffic. Curr Opin Cell Biol 9:18–28, 1997. Nakano M, Nogami S, Sato S, Terano A, Shirataki H. Interaction of syntaxin with -fodrin, a major component of the submembranous cytoskeleton. Biochem Biophys Res Commun 288:468–475, 2001. Ohyama A, Komiya Y, Igarashi M. Globular tail of myosin-V is bound to vamp/synaptobrevin. Biochem Biophys Res Commun 280:988–991, 2001. Chialvo AA, Simonson JM. The structure of CaCl2 aqueous solutions over a wide range of concentration. Interpretation of diffraction experiments via molecular simulation. J Chem Phys 119:8052–8061, 2003. Bako I, Hutter J, Palinkas G. Car-Parrinello molecular dynamics simulation of the hydrated calcium ion. J Chem Phys 117:9838–9843, 2002. Schwenk CF, Loeffler HH, Rode BM. Molecular dynamics simulations of Ca2+ in water: comparison of a classical simulation including three-body corrections and Born-Oppenheimer ab initio and density functional theory quantum mechanical/molecular mechanics simulations. J Chem Phys 115:10808–10813, 2001. Licheri G, Piccaluga G, Pinna G. X-ray diffraction study of the average solute species in CaCl2 aqueous solutions. J Chem Phys 64:2437–2446, 1976. McIntosh TJ. Short-range interactions between lipid bilayers measured by X-ray diffraction. Curr Opin Struct Biol 10:481–485, 2000. Portis A, Newton C, Pangborn W, Papahadjopoulos D. Studies on the mechanism of membrane fusion: evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin. Biochemistry 18:780–790, 1979. Laroche G, Dufourc EJ, Dufoureq J, Pezolet M. Structure and dynamics of dimyristoylphosphatidic acid/calcium complex by 2H NMR, infrared, spectroscopies and small-angle x-ray diffraction. Biochemistry 30:3105–3114, 1991. Wilschut J, Duzgunes N, Fraley R, Papahadjopoulos D. Studies on the mechanism of membrane fusion: kinetics of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle content. Biochemistry 19:6011–6021, 1980. Kelly M, Cho WJ, Jeremic A, Abu-Hamdah R, Jena BP. Vesicle swelling regulates content expulsion during secretion. Cell Biol Int 28:709–716, 2004. Lawson D, Fewtrell C, Gomperts B, Raff M. Anti-immunoglobulin induced histamine secretion by rat peritoneal mast cells studied by immuno ferritin electron microscopy. J Exp Med 142: 391–402, 1975.

rating: 7.46 from 41 votes | updated on: 29 Oct 2006 | views: 15958 |

Rate article:

excellent! bad…