table of contents table of contents

This paper describes the freely available web server http://biophysics.cs.vt.…

Home » Biology Articles » Biophysics » H++: a server for estimating pKas and adding missing hydrogens to macromolecules » References

- H++: a server for estimating pKas and adding missing hydrogens to macromolecules

Perutz, M. (1978) Electrostatic effects in proteins Science, 201, 1187–1191. Honig, B. and Nicholls, A. (1995) Classical electrostatics in biology and chemistry Science, 268, 1144. Davis, M.E. and McCammon, J.A. (1990) Electrostatics in biomolecular structure and dynamics Chem. Rev., 94, 7684–7692 . Baker, N.A. and McCammon, J.A. (2002) Electrostatic Interactions In Bourne, P. and Weissig, H. (Eds.). Structural Bioinformatics, NY John Wiley & Sons, Inc. pp. 427–440 . Warshel, A. and Åqvist, J. (1991) Electrostatic energy and macromolecular function Ann. Rev. Biophys. Biophys. Chem., 20, 267–298. Warshel, A. (1981) Calculations of enzymatic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes Biochemistry, 20, 3167–3177. Fersht, A., Shi, J., Knill-Jones, J., Lowe, D., Wilkinson, A., Blow, D., Brick, P., Carter, P., Waye, M., Winter, G. (1985) Hydrogen bonding and biological specificity analysed by protein engineering Nature, 314, 235–238. Szabo, G., Eisenman, G., McLaughlin, S., Krasne, S. (1972) Ionic probes of membrane structures Ann. N. Y. Acad. Sci., 195, 273–290. Sheinerman, F.B., Norel, R., Honig, B. (2000) Electrostatic aspects of protein–protein interactions Curr. Opin. Struct. Biol., 10, 153–159. Onufriev, A., Smondyrev, A., Bashford, D. (2003) Proton affinity changes during unidirectional proton transport in the bacteriorhodopsin photocycle J. Mol. Biol., 332, 1183–1193. Yang, A.-S. and Honig, B. (1992) Electrostatic effects on protein stability Curr. Opin. Struct. Biol., 2, 40–45. Whitten, S. and Garcia-Moreno, B. (2000) pH dependence of stability of Staphylococcal nuclease: evidence of substantial electrostatic interactions in denatured state Biochemistry, 39, 14292–14304. Tanford, C. and Kirkwood, J. (1957) Theory of protein titration curves J. Am. Chem. Soc., 79, 5333–5339. Tanford, C. and Roxby, R. (1972) Interpretation of protein titration curves Biochemistry, 11, 2192–2198. Bashford, D. and Karplus, M. (1990) pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model Biochemistry, 29, 10219–10225. Beroza, P., Fredkin, D.R., Okamura, M.Y., Feher, G. (1991) Protonation of interacting residues in a protein by Monte Carlo method Proc. Natl Acad. Sci. USA, 88, 5804–5808. Takahashi, T., Nakamura, H., Walda, A. (1992) Electrostatic forces in two lysozymes: calculations and measurements of histidine pKa values Biopolymers, 32, 897–909. Yang, A.-S., Gunner, M.R., Sampogna, R., Sharp, K., Honig, B. (1993) On the calculation of pKa's in proteins Proteins, 15, 252–265. DelBuono, G., Figueirido, F., Levy, R. (1994) Intrinsic pKas of ionizable residues in proteins: an explicit solvent calculation for lysozyme Proteins, 20, 85–97. Demchuk, E. and Wade, R.C. (1996) Improving the continuum dielectric approach to calculating pKa's of ionizable groups in proteins J. Phys. Chem., 100, 17373–17387. Sham, Y.Y., Chu, Z.T., Warshel, A. (1997) Consistent calculations of pKa's of ionizable residues in proteins: semi-microscopic and microscopic approaches J. Phys. Chem., 101, 4458–4472 . Ullmann, G.M. and Knapp, E.-W. (1999) Electrostatic models for computing protonation and redox equilibria in proteins Eur. Biophys. J., 28, 533–551. Spassov, V.Z. and Bashford, D. (1999) Multiple-site ligand binding to flexible macromolecules J. Comp. Chem., 20, 1091–1111. Antosiewicz, J., McCammon, J.A., Gilson, M.K. (1994) Prediction of pH-dependent properties of proteins J. Mol. Biol., 238, 415–436. Nielson, J.E. and Vriend, G. (2001) Optimizing the hydrogen-bond network in Poisson–Boltzmann equation-based pKa calculations Proteins, 43, 403–412. Georgescu, R., Alexov, E., Gunner, M. (2002) Combining conformational flexibility and continuum electrostatics for calculating pKas in proteins Biophys. J., 83, 1731–1748. Mongan, J., Case, D., McCammon, J.A. (2004) Constant pH molecular dynamics in generalized Born implicit solvent J. Comput. Chem., 25, 2038–2048. Linderstrom-Lang, K. (1924) On the ionisation state of proteins C. R. Trav. Lab. Carlsberg, 15, 1–29 . Pearlman, D., Case, D., Caldwell, J., Ross, W., Cheatham, T., III, DeBolt, S., Ferguson, D., Seibel, G., Kollman, P. (1995) Amber, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules Comp. Phys. Commun., 91, 1–41 . Bashford, D. and Gerwert, K. (1992) Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin J. Mol. Biol., 224, 473–486. Tishmack, P.A., Bashford, D., Harms, E., Van Etten, R.L. (1997) Use of 1 h NMR spectroscopy and computer simulations to analyze histidine pKa changes in a protein tyrosine phosphatase: experimental and theoretical determination of electrostatic properties in a small protein Biochemistry, 36, 11984. Onufriev, A., Bashford, D., Case, D. (2000) Modification of the generalized Born model suitable for macromolecules J. Phys. Chem., B104, 3712–3720 . Onufriev, A., Bashford, D., Case, D. (2004) Exploring native states and large-scale conformational changes with a modified generalized Born model Proteins, 55, 383–394. Gilson, M.K. (1993) Multiple-site titration and molecular modeling: two rapid methods for computing energies and forces for ionazable groups in proteins Proteins, 15, 266–282. Feig, M., Onufriev, A., Lee, M.S., Im, W., Case, D.A., Brooks, C.L., III. (2004) Performance comparison of generalized Born and Poisson methods in the calculation of electrostatic solvation energies for protein structures J. Comput. Chem., 25, 265–284.

rating: 5.00 from 1 votes | updated on: 7 Dec 2007 | views: 9058 |

Rate article: