table of contents table of contents

The authors reviewed the current thinking and progress on how to get …

Home » Biology Articles » Bioinformatics » From genome to epigenome » References

- From genome to epigenome

Waddington, C. (1942) The Epigenoptype. Endeavour, 1, 18–20. Jenuwein, T. and Allis, C.D. (2001) Translating the histone code. Science, 293, 1074–1080. Wang, Y., Fischle, W., Cheung, W., Jacobs, S., Khorasanizadeh, S. and Allis, C.D. (2004) Beyond the double helix: writing and reading the histone code. Novartis Found. Symp., 259, 3–17. Orlando, V. (2003) Polycomb, epigenomes, and control of cell identity. Cell, 112, 599–606. Levine, S.S., King, I.F.G. and Kingston, R.E. (2004) Division of labor in polycomb group repression. Trends Biochem. Sci., 29, 478–485. Jenuwein, T. (2002) Molecular biology. An RNA-guided pathway for the epigenome. Science, 297, 2215–2218. Lippman, Z. and Martienssen, R. (2004) The role of RNA interference in heterochromatic silencing. Nature, 431, 364–370. Beck, S., Olek, A. and Walter, J. (1999) From genomics to epigenomics: a loftier view of life. Nat. Biotechnol., 17, 1144. Fuks, F., Hurd, P., Wolf, D., Nan, X., Bird, A. and Kouzarides, T. (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J. Biol. Chem., 278, 4035–4040. Hashimshony, T., Zhang, J., Keshet, I., Bustin, M. and Cedar, H. (2003) The role of DNA methylation in setting up chromatin structure during development. Nat. Genet., 34, 187–192. Burgers, W.A., Fuks, F. and Kouzarides, T. (2002) DNA methyltransferases get connected to chromatin. Trends Genet., 18, 275–277. Huang, T.H.-M., Plass, C., Liang, G. and Laird, P.W. (2003) Epi meets genomics: technologies for finding and reading the 5th base. In Beck, S. and Olek, A. (eds), The Epigenome. Molecular Hide and Seek. Wiley-VCH GmbH & Co.KGaA, Germany, pp. 41–64. Fazzari, M.J. and Greally, J.M. (2004) Epigenomics: beyond CpG islands. Nat. Rev. Genet., 5, 446–455. Liu, Z.J. and Maekawa, M. (2003) Polymerase chain reaction-based methods of DNA methylation analysis. Anal. Biochem., 317, 259–265. Hou, P., Ji, M., Li, S., He, N. and Lu, Z. (2004) High-throughput method for detecting DNA methylation. J. Biochem. Biophys. Methods, 60, 139–150. Gitan, R.S., Shi, H., Chen, C.M., Yan, P.S. and Huang, T.H. (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res., 12, 158–164. Tost, J., Schatz, P., Schuster, M., Berlin, K. and Gut, I.G. (2003) Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry. Nucleic Acids Res., 31, e50. Dupont, J.M., Tost, J., Jammes, H. and Gut, I.G. (2004) De novo quantitative bisulphite sequencing using the pyrosequencing technology. Anal. Biochem., 333, 119–127. Thomassin, H., Kress, C. and Grange, T. (2004) MethylQuant: a sensitive method for quantifying methylation of specific cytosines within the genome. Nucleic Acids Res., 32, e168. Lewin, J., Schmitt, A.O., Adorjan, P., Hildmann, T. and Piepenbrock, C. (2004) Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. Bioinformatics, 20, 3005–3012. Adorjan, P., Distler, J., Lipscher, E., Model, F., Muller, J., Pelet, C., Braun, A., Florl, A.R., Gutig, D., Grabs, G. et al. (2002) Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res., 30, e21. Cross, S.H., Clark, V.H. and Bird, A.P. (1999) Isolation of CpG islands from large genomic clones. Nucleic Acids Res., 27, 2099–2107. Hatada, I., Kato, A., Morita, S., Obata, Y., Nagaoka, K., Sakurada, A., Sato, M., Horii, A., Tsujimoto, A. and Matsubara, K. (2002) A microarray-based method for detecting methylated loci. J. Hum. Genet., 47, 448–451. Huang, T.H., Perry, M.R. and Laux, D.E. (1999) Methylation profiling of CpG islands in human breast cancer cells. Hum. Mol. Genet., 8, 459–470. Bedell, J.A., Budiman, M.A., Nunberg, A., Citek, R.W., Robbins, D., Jones, J., Flick, E., Rholfing, T., Fries, J., Bradford, K. et al. (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol., 3, e13. Rabinowicz, P.D. (2003) Constructing gene-enriched plant genomic libraries using methylation filtration technology. Methods Mol. Biol., 236, 21–36. Yamada, Y., Watanabe, H., Miura, F., Soejima, H., Uchiyama, M., Iwasaka, T., Mukai, T., Sakaki, Y. and Ito, T. (2004) A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res., 14, 247–266. Monk, D., Smith, R., Arnaud, P., Preece, M.A., Stanier, P., Beechey, C.V., Peters, J., Kelsey, G. and Moore, G.E. (2003) Imprinted methylation profiles for proximal mouse chromosomes 11 and 7 as revealed by methylation-sensitive representational difference analysis. Mamm. Genome, 14, 805–816. Smith, R.J. and Kelsey, G. (2001) Identification of imprinted loci by methylation: use of methylation-sensitive representational difference analysis (Me-RDA). Methods Mol. Biol., 181, 113–132. Smith, R.J., Dean, W., Konfortova, G. and Kelsey, G. (2003) Identification of novel imprinted genes in a genome-wide screen for maternal methylation. Genome Res., 13, 558–569. Matsuyama, T., Kimura, M.T., Koike, K., Abe, T., Nakano, T., Asami, T., Ebisuzaki, T., Held, W.A., Yoshida, S. and Nagase, H. (2003) Global methylation screening in the Arabidopsis thaliana and Mus musculus genome: applications of virtual image restriction landmark genomic scanning (Vi-RLGS). Nucleic Acids Res., 31, 4490–4496. Rush, L.J. and Plass, C. (2002) Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal. Biochem., 307, 191–201. Costello, J.F., Fruhwald, M.C., Smiraglia, D.J., Rush, L.J., Robertson, G.P., Gao, X., Wright, F.A., Feramisco, J.D., Peltomaki, P., Lang, J.C. et al. (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet., 24, 132–138. Crawford, G.E., Holt, I.E., Mullikin, J.C., Tai, D., Blakesley, R., Bouffard, G., Young, A., Masiello, C., Green, E.D., Wolfsberg, T.G. et al. (2004) Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. Proc. Natl Acad. Sci. USA, 101, 992–997. Sabo, P., Humbert, R., Hawrylycz, M., Wallace, J., Dorschner, M., McArthur, M. and Stamatoyannopoulos, J. (2004) Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Proc. Natl Acad. Sci. USA, 101, 4537–4542. Gilbert, N., Boyle, S., Fiegler, H., Woodfine, K., Carter, N.P. and Bickmore, W.A. (2004) Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell, 118, 555–566. White, E.J., Emanuelsson, O., Scalzo, D., Royce, T., Kosak, S., Oakeley, E.J., Weissman, S., Gerstein, M., Groudine, M., Snyder, M. et al. (2004) DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. Proc. Natl Acad. Sci. USA, 101, 17771–17776. Woodfine, K., Fiegler, H., Beare, D.M., Collins, J.E., McCann, O.T., Young, B.D., Debernardi, S., Mott, R., Dunham, I. and Carter, N.P. (2004) Replication timing of the human genome. Hum. Mol. Genet., 13, 191–202. Woodfine, K., Beare, D.M., Ichimura, K., Debernardi, S., Mungall, A.J., Fiegler, H., Collins, V.P. and Carter, N.P. (2005) Replication timing of human chromosome 6. Cell Cycle, 4, e144. Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E. et al. (2000) Genome-wide location and function of DNA binding proteins. Science, 290, 2306–2309. Widlak, P. (2004) DNA microarrays, a novel approach in studies of chromatin structure. Acta Biochim. Pol., 51, 1–8. Hanlon, S.E. and Lieb, J.D. (2004) Progress and challenges in profiling the dynamics of chromatin and transcription factor binding with DNA microarrays. Curr. Opin. Genet. Dev., 14, 697–705. Schubeler, D., MacAlpine, D.M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van Leeuwen, F., Gottschling, D.E., O'Neill, L.P., Turner, B.M., Delrow, J. et al. (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev., 18, 1263–1271. Matarazzo, M.R., Lembo, F., Angrisano, T., Ballestar, E., Ferraro, M., Pero, R., De Bonis, M.L., Bruni, C.B., Esteller, M., D'Esposito, M. et al. (2004) In vivo analysis of DNA methylation patterns recognized by specific proteins: coupling CHIP and bisulphite analysis. Biotechniques, 37, 666–668. Mukhopadhyay, R., Yu, W., Whitehead, J., Xu, J., Lezcano, M., Pack, S., Kanduri, C., Kanduri, M., Ginjala, V., Vostrov, A. et al. (2004) The binding sites for the chromatin insulator protein CTCF map to DNA methylation-free domains genome-wide. Genome Res., 14, 1594–1602. Murrell, A., Heeson, S. and Reik, W. (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat. Genet., 36, 889–893. Horike, S., Cai, S., Miyano, M., Cheng, J.F. and Kohwi-Shigematsu, T. (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat. Genet., 37, 31–40. Cremer, T. and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet., 2, 292–301. Cremer, M., von Hase, J., Volm, T., Brero, A., Kreth, G., Walter, J., Fischer, C., Solovei, I., Cremer, C. and Cremer, T. (2001) Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res., 9, 541–567. Osborne, C.S., Chakalova, L., Brown, K.E., Carter, D., Horton, A., Debrand, E., Goyenechea, B., Mitchell, J.A., Lopes, S., Reik, W. et al. (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat. Genet., 36, 1065–1071. Chambeyron, S. and Bickmore, W.A. (2004) Does looping and clustering in the nucleus regulate gene expression? Curr. Opin. Cell Biol., 16, 256–262. Boyle, S., Gilchrist, S., Bridger, J.M., Mahy, N.L., Ellis, J.A. and Bickmore, W.A. (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum. Mol. Genet., 10, 211–219. Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D.H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M. et al. (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol., 18, 630–634. Tuteja, R. and Tuteja, N. (2004) Serial analysis of gene expression (SAGE): unraveling the bioinformatics tools. Bioessays, 26, 916–922. Sandoval, J., Rodriguez, J.L., Tur, G., Serviddio, G., Pereda, J., Boukaba, A., Sastre, J., Torres, L., Franco, L. and Lopez-Rodas, G. (2004) RNAPol–ChIP: a novel application of chromatin immunoprecipitation to the analysis of real-time gene transcription. Nucleic Acids Res., 32, e88. Wang, Z., Fan, H., Yang, H.H., Hu, Y., Buetow, K.H. and Lee, M.P. (2004) Comparative sequence analysis of imprinted genes between human and mouse to reveal imprinting signatures. Genomics, 83, 395–401. Weidman, J.R., Murphy, S.K., Nolan, C.M., Dietrich, F.S. and Jirtle, R.L. (2004) Phylogenetic footprint analysis of IGF2 in extant mammals. Genome Res., 14, 1726–1732. Ringrose, L., Rehmsmeier, M., Dura, J. and Paro, R. (2003) Genome-wide prediction of polycomb/trithorax response elements in Drosophila melanogaster. Dev. Cell, 5, 759–771. Bernstein, B.E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D.K., Huebert, D.J., McMahon, S., Karlsson, E.K., Kulbokas, E.J., III, Gingeras, T.R. et al. (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 120, 169–181. Lippman, Z., Gendrel, A., Black, M., Vaughn, M., Dedhia, N., McCombie, W., Lavine, K., Mittal, V., May, B., Kasschau, K. et al. (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature, 430, 471–476. Rakyan, V.K., Hildmann, T., Novik, K.L., Lewin, J., Tost, J., Cox, A.V., Andrews, T.D., Howe, K.L., Otto, T., Olek, A. et al. (2004) DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol., 2, e405. Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev., 16, 6–21. Costello, J.F., Fruhwald, M.C., Smiraglia, D.J., Rush, L.J., Robertson, G.P., Gao, X., Wright, F.A., Feramisco, J.D., Peltomaki, P., Lang, J.C. et al. (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet., 24, 132–138. Kondo, T., Bobek, M.P., Kuick, R., Lamb, B., Zhu, X., Narayan, A., Bourc'his, D., Viegas-Pequignot, E., Ehrlich, M. and Hanash, S.M. (2000) Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum. Mol. Genet., 9, 597–604. Esteller, M. and Herman, J.G. (2002) Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J. Pathol., 196, 1–7. Issa, J.P. (2004) Opinion: CpG island methylator phenotype in cancer. Nat. Rev. Cancer, 4, 988–993. Egger, G., Liang, G., Aparicio, A. and Jones, P.A. (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429, 457–463. Lo, H.S., Wang, Z., Hu, Y., Yang, H.H., Gere, S., Buetow, K.H. and Lee, M.P. (2003) Allelic variation in gene expression is common in the human genome. Genome Res., 13, 1855–1862. Pastinen, T. and Hudson, T.J. (2004) Cis-acting regulatory variation in the human genome. Science, 306, 647–650. Rakyan, V.K., Blewitt, M.E., Druker, R., Preis, J.I. and Whitelaw, E. (2002) Metastable epialleles in mammals. Trends Genet., 18, 348–351. Bjornsson, H.T., Fallin, M.D. and Feinberg, A.P. (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet., 20, 350–358. Murrell, A., Heeson, S., Cooper, W.N., Douglas, E., Apostolidou, S., Moore, G.E., Maher, E.R. and Reik, W. (2004) An association between variants in the IGF2 gene and Beckwith-Wiedemann syndrome: interaction between genotype and epigenotype. Hum. Mol. Genet., 13, 247–255.

rating: 6.20 from 15 votes | updated on: 26 Nov 2006 | views: 13696 |

Rate article: