table of contents table of contents

Recent studies using atomic force microscopy demonstrate for the first time the …

Home » Biology Articles » Biophysics » Fusion Pore in Live Cells » References

- Fusion Pore in Live Cells

Albrecht TH, Akamine S, Carver TE, and Quate CF. Microfabrication of cantilever styli for the atomic force microscope. J Vac Sci Technol A8: 3386–3396, 1990. Alexander S, Hellemans L, Marti O, Schneir J, Elings V, and Hansma PK. An atomic resolution atomic force microscope implemented using an optical lever. J Appl Phys 65: 164–167, 1989. Bennett V. Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev 70: 1029–1065, 1990. Binnig G, Quate CF, and Gerber C. Atomic force microscope. Phys Rev Lett 56: 930–933, 1986. Binnig G and Smith DPF. Single-tube three-dimensional scanner for scanning tunneling microscopy. Rev Sci Instrum 57: 1688–1689, 1986. Cho SJ, Cho J, and Jena BP. The number of secretory vesicles remains unchanged following exocytosis. Cell Biol Int 26: 29–33, 2002. Cho SJ, Jeftinija K, Glavaski A, Jeftinija S, Jena BP, and Anderson LL. Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology 143: 1144–1148, 2002. Cho SJ, Quinn AS, Stromer MH, Dash S, Cho J, Taatjes DJ, and Jena BP. Structure and dynamics of the fusion pore in live cells. Cell Biol Int 26: 35–42, 2002. Cho SJ, Wakade A, Pappas GD, and Jena BP. New structure involved in transient membrane fusion and exocytosis. Ann NY Acad Sci. In press. Faigle W, Colucci-Guyon E, Louvard D, Amigorena S, and Galli T. Vimentin filaments in fibroblasts are a reservoir for SNAP-23, a component of the membrane fusion machinery. Mol Biol Cell 11: 3485–3494, 2000. Goodson HV, Valetti C, and Kreis TE. Motors and membrane traffic. Curr Opin Cell Biol 9: 18–28, 1997. Lawson D, Fewtrell C, Gomperts B, and Raff M. Anti-immunoglobulin-induced histamine secretion by rat peritoneal mast cells studied by immuno ferritin electron microscopy. J Exp Med 142: 391–402, 1975. Monck JR, Oberhauser AF, and Fernandez JM. The exocytotic fusion pore interface: a model of the site of neurotransmitter release. Mol Membr Biol 12: 151–156, 1995. Nakano M, Nogami S, Sato S, Terano A, and Shirataki H. Interaction of syntaxin with -fodrin, a major component of the submembranous cytoskeleton. Biochem Biophys Res Commun 288: 468–475, 2001. Ohyama A, Komiya Y, and Igarashi M. Globular tail of myosin-V is bound to vamp/synaptobrevin. Biochem Biophys Res Commun 280: 988–991, 2001. Prekereis R and Terrian DM. Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J Cell Biol 137: 1589–1601, 1997. Rothman JE. Mechanism of intracellular protein transport. Nature 372: 55–63, 1994. Rugard D and Hansma P. Atomic force microscopy. Physics Today 43: 23–30, 1990. Schneider SW, Sritharan KC, Geibel JP, Oberleithner H, and Jena BP. Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc Natl Acad Sci USA 94: 316–321, 1997. Weber T, Zemelman BV, McNew JA, Westerman B, Gmachl M, Parlati F, Söllner TH, and Rothman JE. SNAREpins: minimal machinery for membrane fusion. Cell 92: 759–772, 1998.

rating: 6.20 from 5 votes | updated on: 2 Jun 2007 | views: 7539 |

Rate article: