table of contents table of contents

CFD analysis of venous CABG based on in-vivo CT datasets in patients …

Home » Biology Articles » Bioengineering » Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts » References

- Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts

  1. Favaloro RG: Saphenous vein autograft replacement of severe segmental coronary artery occlusion: operative technique.

    Ann Thorac Surg 1968, 5:334-339.

  2. Grondin CM, Campeau L, Lesperance J, Enjalbert M, Bourassa MG: Comparison of late changes in internal mammary artery and saphenous vein grafts in two consecutive series of patients 10 years after operation.

    Circulation 1984, 70:I208-212.

  3. Meeter K, Veldkamp R, Tijssen JG, van Herwerden LL, Bos E: Clinical outcome of single versus sequential grafts in coronary bypass operations at ten years' follow-up.

    J Thorac Cardiovasc Surg 1991, 101:1076-1081.

  4. O'Neill MJ Jr, Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA: A rationale for the use of sequential coronary artery bypass grafts.

    J Thorac Cardiovasc Surg 1981, 81:686-690.

  5. Christenson JT, Simonet F, Schmuziger M: Sequential vein bypass grafting: tactics and long-term results.

    Cardiovasc Surg 1998, 6:389-397.

  6. Kieser TM, FitzGibbon GM, Keon WJ: Sequential coronary bypass grafts. Long-term follow-up.

    J Thorac Cardiovasc Surg 1986, 91:767-772.

  7. Motwani JG, Topol EJ: Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention.

    Circulation 1998, 97:916-931.

  8. Campeau L, Enjalbert M, Lesperance J, Bourassa MG, Kwiterovich P Jr, Wacholder S, Sniderman A: The relation of risk factors to the development of atherosclerosis in saphenous-vein bypass grafts and the progression of disease in the native circulation. A study 10 years after aortocoronary bypass surgery.

    N Engl J Med 1984, 311:1329-1332.

  9. Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W Jr, Richardson M, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, et al.: A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.

    Circulation 1992, 85:391-405.

  10. Bourassa MG: Fate of venous grafts: the past, the present and the future.

    J Am Coll Cardiol 1991, 17:1081-1083.

  11. Dilley RJ, McGeachie JK, Tennant M: Vein to artery grafts: a morphological and histochemical study of the histogenesis of intimal hyperplasia.

    Aust N Z J Surg 1992, 62:297-303.

  12. Abbott WM, Megerman J: Does compliance mismatch alone cause neointimal hyperplasia?

    J Vasc Surg 1989, 9:507.

  13. Imparato AM, Bracco A, Kim GE, Zeff R: Intimal and neointimal fibrous proliferation causing failure of arterial reconstructions.

    Surgery 1972, 72:1007-1017.

  14. Faulkner SL, Fisher RD, Conkle DM, Page DL, Bender HW Jr: Effect of blood flow rate on subendothelial proliferation in venous autografts used as arterial substitutes.

    Circulation 1975, 52:I163-172.

  15. Sottiurai VS, Sue SL, Feinberg EL 2nd, Bringaze WL, Tran AT, Batson RC: Distal anastomotic intimal hyperplasia: biogenesis and etiology.

    Eur J Vasc Surg 1988, 2:245-256.

  16. Sottiurai VS: Distal Anastomotic Intimal Hyperplasia: Histocytomorphology, Pathophysiology, Etiology, and Prevention.

    International Journal Of Angiology 1999, 8:1-10.

  17. Giddens DP, Zarins CK, Glagov S: The Role of Fluid-Mechanics in the Localization and Detection of Atherosclerosis.

    Journal of Biomechanical Engineering-Transactions of the Asme 1993, 115(4B):588-594.

  18. Nerem RM: Vascular Fluid-Mechanics, the Arterial-Wall, and Atherosclerosis.

    Journal of Biomechanical Engineering-Transactions of the Asme 1992, 114(3):274-282.

  19. Kassab GS, Navia JA: Biomechanical considerations in the design of graft: The homeostasis hypothesis.

    Annual Review of Biomedical Engineering 2006, 8:499-535.

  20. Pijls NHJ, De Bruyne B, Bech GJW, Liistro F, Heyndrickx GR, Bonnier HJRM, Koolen JJ: Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery – Validation in humans.

    Circulation 2000, 102:2371-2377.

  21. Krams R, Wentzel JJ, Cespedes I, Vinke R, Carlier S, van der Steen AF, Lancee CT, Slager CJ: Effect of catheter placement on 3-D velocity profiles in curved tubes resembling the human coronary system.

    Ultrasound Med Biol 1999, 25:803-810.

  22. Lotz J, Meier C, Leppert A, Galanski M: Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation.

    Radiographics 2002, 22:651-671.

  23. Steinman DA, Vinh B, Ethier CR, Ojha M, Cobbold RS, Johnston KW: A numerical simulation of flow in a two-dimensional end-to-side anastomosis model.

    J Biomech Eng 1993, 115:112-118.

  24. Ethier CR, Steinman DA, Zhang X, Karpik SR, Ojha M: Flow waveform effects on end-to-side anastomotic flow patterns.

    J Biomech 1998, 31:609-617.

  25. Ethier CR, Prakash S, Steinman DA, Leask RL, Couch GG, Ojha M: Steady flow separation patterns in a 45 degree junction.

    J Fluid Mech 2000, 411:1-38.

  26. Fei DY, Thomas JD, Rittgers SE: The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study.

    J Biomech Eng 1994, 116:331-336.

  27. Freshwater IJ, Morsi YS, Lai T: The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.

    Proc Inst Mech Eng [H] 2006, 220:743-757.

  28. Sherwin SJ, Shah O, Doorly DJ, Peiro J, Papaharilaou Y, Watkins N, Caro CG, Dumoulin CL: The influence of out-of-plane geometry on the flow within a distal end-to-side anastomosis.

    J Biomech Eng 2000, 122:86-95.

  29. Papaharilaou Y, Doorly DJ, Sherwin SJ: The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis.

    Journal of Biomechanics 2002, 35:1225-1239.

  30. Bertolotti C, Deplano V: Three-dimensional numerical simulations of flow through a stenosed coronary bypass.

    J Biomech 2000, 33:1011-1022.

  31. Kute SM, Vorp DA: The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study.

    J Biomech Eng 2001, 123:277-283.

  32. Bertolotti C, Deplano V, Fuseri J, Dupouy P: Numerical and experimental models of post-operative realistic flows in stenosed coronary bypasses.

    J Biomech 2001, 34:1049-1064.

  33. Longest PW, Kleinstreuer C: Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses.

    J Biomech Eng 2003, 125:671-681.

  34. Sherwin SJ, Doorly DJ, Franke P, Peiro J: Unsteady near wall residence times and shear exposure in model distal arterial bypass grafts.

    Biorheology 2002, 39:365-371.

  35. Sankaranarayanan M, Chua LP, Ghista DN, Tan YS: Computational model of blood flow in the aorto-coronary bypass graft.

    Biomed Eng Online 2005, 4:14.

  36. Sankaranarayanan M, Ghista DN, Poh CL, Seng TY, Kassab GS: Analysis of blood flow in an out-of-plane CABG model.

    Am J Physiol Heart Circ Physiol 2006, 291:H283-295.

  37. Heise M, Schmidt S, Kruger U, Ruckert R, Rosler S, Neuhaus P, Settmacher U: Flow pattern and shear stress distribution of distal end-to-side anastomoses. A comparison of the instantaneous velocity fields obtained by particle image velocimetry.

    J Biomech 2004, 37:1043-1051.

  38. Hughes PE, How TV: Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis.

    J Biomech 1996, 29:855-872.

  39. Li XM, Rittgers SE: Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different POS:DOS flow ratios.

    J Biomech Eng 2001, 123:270-276.

  40. Ojha M: Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model.

    J Biomech 1993, 26:1377-1388.

  41. Papaharilaou Y, Doorly DJ, Sherwin SJ, Peiro J, Griffith C, Cheshire N, Zervas V, Anderson J, Sanghera B, Watkins N, Caro CG: Combined MR imaging and numerical simulation of flow in realistic arterial bypass graft models.

    Biorheology 2002, 39:525-531.

  42. Bonert M, Myers JG, Fremes S, Williams J, Ethier CR: A numerical study of blood flow in coronary artery bypass graft side-to-side anastomoses.

    Annals of Biomedical Engineering 2002, 30:599-611.

  43. Boutsianis E, Dave H, Frauenfelder T, Poulikakos D, Wildermuth S, Turina M, Ventikos Y, Zund G: Computational simulation of intracoronary flow based on real coronary geometry.

    Eur J Cardiothorac Surg 2004, 26:248-256.

  44. Ramaswamy SD, Vigmostad SC, Wahle A, Lai YG, Olszewski ME, Braddy KC, Brennan TM, Rossen JD, Sonka M, Chandran KB: Fluid dynamic analysis in a human left anterior descending coronary artery with arterial motion.

    Ann Biomed Eng 2004, 32:1628-1641.

  45. Canver CC, Dame NA: Ultrasonic Assessment of Internal Thoracic Artery Graft Flow in the Revascularized Heart.

    Annals of Thoracic Surgery 1994, 58:135-138.

  46. Drost C: On/Off Pump Graft Patency Assessment. United States of America: Transonic Systems, Inc; 2002.

  47. Nieman K, Pattynama PM, Rensing BJ, Van Geuns RJ, De Feyter PJ: Evaluation of patients after coronary artery bypass surgery: CT angiographic assessment of grafts and coronary arteries.

    Radiology 2003, 229:749-756.

  48. Pache G, Saueressig U, Frydrychowicz A, Foell D, Ghanem N, Kotter E, Geibel-Zehender A, Bode C, Langer M, Bley T: Initial experience with 64-slice cardiac CT: non-invasive visualization of coronary artery bypass grafts.

    European Heart Journal 2006, 27:976-980.

  49. Flohr TG, Stierstorfer K, Ulzheimer S, Bruder H, Primak AN, McCollough CH: Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot.

    Med Phys 2005, 32:2536-2547.

  50. Scheffel H, Alkadhi H, Plass A, Vachenauer R, Desbiolles L, Gaemperli O, Schepis T, Frauenfelder T, Schertler T, Husmann L, et al.: Accuracy of dual-source CT coronary angiography: First experience in a high pre-test probability population without heart rate control.

    Eur Radiol 2006, 16:2739-2747.

  51. Suo J: Investigation of Blood Flow Patterns and Hemodynamics in the human ascending aorta and major trunks of right and left coronary arteries using magnetic resonance imaging and computational fluid dynamics.In PhD Thesis. Georgia Institute of Technology, Biomedical Engineering; 2005.

  52. Zeng DH, Ding ZH, Friedman MH, Ethier CR: Effects of cardiac motion on right coronary artery hemodynamics.

    Annals of Biomedical Engineering 2003, 31:420-429.

  53. Hofer M, Rappitsch G, Perktold K, Trubel W, Schima H: Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.

    J Biomech 1996, 29:1297-1308.

  54. Leuprecht A, Perktold K, Prosi M, Berk T, Trubel W, Schima H: Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts.

    J Biomech 2002, 35:225-236.

  55. Ballyk PD, Steinman DA, Ethier CR: Simulation of non-Newtonian blood flow in an end-to-side anastomosis.

    Biorheology 1994, 31:565-586.

rating: 1.00 from 4 votes | updated on: 26 Nov 2007 | views: 14861 |

Rate article: