table of contents table of contents

Home » Biology Articles » Developmental Biology » Embryonic stem cell differentiation: emergence of a new era in biology and medicine » References

- Embryonic stem cell differentiation: emergence of a new era in biology and medicine


Ali, N.N., Edgar, A.J., Samadikuchaksaraei, A., Timson, C.M., Romanska, H.M., Polak, J.M., and Bishop, A.E. 2002. Derivation of type II alveolar epithelial cells from murine embryonic stem cells. Tissue Eng. 8: 541–550.

Amit, M., Carpenter, M.K., Inokuma, M.S., Chiu, C.P., Harris, C.P., Waknitz, M.A., Itskovitz-Eldor, J., and Thomson, J.A. 2000. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227: 271–278.

Arceci, R.J., King, A.A., Simon, M.C., Orkin, S.H., and Wilson, D.B. 1993. Mouse GATA-4: A retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol. Cell. Biol. 13: 2235–2246.

Asahina, K., Fujimori, H., Shimizu-Saito, K., Kumashiro, Y., Okamura, K., Tanaka, Y., Teramoto, K., Arii, S., and Teraoka, H. 2004. Expression of the liver-specific gene Cyp7a1 reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells 9: 1297–1308.

Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K.L., and Tzukerman, M. 2001. Insulin production by human embryonic stem cells. Diabetes 50: 1691–1697.

Aubert, J., Dunstan, H., Chambers, I., and Smith, A. 2002. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat. Biotechnol. 20: 1240–1245.

Bagutti, C., Wobus, A.M., Fassler, R., and Watt, F.M. 1996. Differentiation of embryonal stem cells into keratinocytes: Comparison of wild-type and {beta} 1 integrin-deficient cells. Dev. Biol. 179: 184–196.

Bain, G., Kitchens, D., Yao, M., Huettner, J.E., and Gottlieb, D.I. 1995. Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168: 342–357.

Banach, K., Halbach, M.D., Hu, P., Hescheler, J., and Egert, U. 2003. Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells. Am. J. Physiol. Heart Circ. Physiol. 284: H2114–H2123.

Barberi, T., Klivenyi, P., Calingasan, N.Y., Lee, H., Kawamata, H., Loonam, K., Perrier, A.L., Bruses, J., Rubio, M.E., Topf, N., et al. 2003. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in Parkinsonian mice. Nat. Biotechnol. 21: 1200–1207.

Barker, J. 1968. Development of the mouse hematopoietic system I. Types of hemoglobin produced in embryonic yolk sac and liver. Dev. Biol. 18: 14–29.

Bautch, V.L., Stanford, W.L., Rapoport, R., Russell, S., Byrum, R.S., and Futch, T.A. 1996. Blood island formation in attached cultures of murine embryonic stem cells. Dev. Dyn. 205: 1–12.

Bautch, V.L., Redick, S.D., Scalia, A., Harmaty, M., Carmeliet, P., and Rapoport, R. 2000. Characterization of the vasculogenic block in the absence of vascular endothelial growth factor-A. Blood 95: 1979–1987.

Beddington, R.S. 1983. The origin of foetal tissues during gastrulation in the rodent. Dev. Mamm. 5: 1–32.

Beddington, R.S. and Robertson, E.J. 1989. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105: 733–737.

Begley, C.G., Aplan, P.D., Denning, S.M., Haynes, B.F., Waldmann, T.A., and Kirsch, I.R. 1989. The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc. Natl. Acad. Sci. 86: 10128–10132.

Ben-Hur, T., Idelson, M., Khaner, H., Pera, M., Reinhartz, E., Itzik, A., and Reubinoff, B.E. 2004. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 22: 1246–1255.

Billon, N., Jolicoeur, C., Ying, Q.L., Smith, A., and Raff, M. 2002. Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells. J. Cell Sci. 115: 3657–3665.

Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St-Onge, L., and Wobus, A.M. 2003. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc. Natl. Acad. Sci. 100: 998–1003.

Boheler, K.R., Czyz, J., Tweedie, D., Yang, H.T., Anisimov, S.V., and Wobus, A.M. 2002. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91: 189–201.

Bradley, A., Evans, M., Kaufman, M.H., and Robertson, E. 1984. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255–256.

Brotherton, T., Chui, D., Gauldie, J., and Patterson, M. 1979. Hemoglobin ontogeny during normal mouse fetal development. Proc. Natl. Acad. Sci. 76: 2853–2857.

Brustle, O., Spiro, A.C., Karram, K., Choudhary, K., Okabe, S., and McKay, R.D. 1997. In vitro-generated neural precursors participate in mammalian brain development. Proc. Natl. Acad. Sci. 94: 14809–14814.

Brustle, O., Jones, K.N., Learish, R.D., Karram, K., Choudhary, K., Wiestler, O.D., Duncan, I.D., and McKay, R.D. 1999. Embryonic stem cell-derived glial precursors: A source of myelinating transplants. Science 285: 754–756.

Burkert, U., von Ruden, T., and Wagner, E.F. 1991. Early fetal hematopoietic development from in vitro differentiated embryonic stem cells. New Biol. 3: 698–708.

Burt, R.K., Verda, L., Kim, D.A., Oyama, Y., Luo, K., and Link, C. 2004. Embryonic stem cells as an alternate marrow donor source: Engraftment without graft-versus-host disease. J. Exp. Med. 199: 895–904.

Buttery, L.D., Bourne, S., Xynos, J.D., Wood, H., Hughes, F.J., Hughes, S.P., Episkopou, V., and Polak, J.M. 2001. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng. 7: 89–99.

Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., et al. 1996. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435–439.

Carotta, S., Pilat, S., Mairhofer, A., Schmidt, U., Dolznig, H., Steinlein, P., and Beug, H. 2004. Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood 104: 1873–1880.

Cerdan, C., Rouleau, A., and Bhatia, M. 2004. VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood 103: 2504–2512.

Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., and Bhatia, M. 2003. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102: 906–915.

Chambers, I. and Smith, A. 2004. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23: 7150–7160.

Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113: 643–655.

Chinzei, R., Tanaka, Y., Shimizu-Saito, K., Hara, Y., Kakinuma, S., Watanabe, M., Teramoto, K., Arii, S., Takase, K., Sato, C., et al. 2002. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology 36: 22–29.

Cho, S.K., Webber, T.D., Carlyle, J.R., Nakano, T., Lewis, S.M., and Zuniga-Pflucker, J.C. 1999. Functional characterization of B lymphocytes generated in vitro from embryonic stem cells. Proc. Natl. Acad. Sci. 96: 9797–9802.

Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, J.C., and Keller, G. 1998. A common precursor for hematopoietic and endothelial cells. Development 125: 725–732.

Clark, A.T., Bodnar, M.S., Fox, M., Rodriquez, R.T., Abeyta, M.J., Firpo, M.T., and Pera, R.A. 2004. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum. Mol. Genet. 13: 727–739..

Colman, A. 2004. Making new {beta} cells from stem cells. Semin. Cell Dev. Biol. 15: 337–345.

Conlon, F.L., Lyons, K.M., Takaesu, N., Barth, K.S., Kispert, A., Herrmann, B., and Robertson, E.J. 1994. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120: 1919–1928.

Coraux, C., Hilmi, C., Rouleau, M., Spadafora, A., Hinnrasky, J., Ortonne, J.P., Dani, C., and Aberdam, D. 2003. Reconstituted skin from murine embryonic stem cells. Curr. Biol. 13: 849–853.

Coucouvanis, E. and Martin, G.R. 1995. Signals for death and survival: A two-step mechanism for cavitation in the vertebrate embryo. Cell 83: 279–287.

Cumano, A., Ferraz, J.C., Klaine, M., Di Santo, J.P., and Godin, I. 2001. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity 15: 477–485.

Daheron, L., Opitz, S.L., Zaehres, H., Lensch, W.M., Andrews, P.W., Itskovitz-Eldor, J., and Daley, G.Q. 2004. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22: 770–778.

Dani, C., Smith, A.G., Dessolin, S., Leroy, P., Staccini, L., Villageois, P., Darimont, C., and Ailhaud, G. 1997. Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell Sci. 110: 1279–1285.

Dell'Era, P., Ronca, R., Coco, L., Nicoli, S., Metra, M., and Presta, M. 2003. Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development. Circ. Res. 93: 414–420.

Deltour, L., Leduque, P., Blume, N., Madsen, O., Dubois, P., Jami, J., and Bucchini, D. 1993. Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proc. Natl. Acad. Sci. 90: 527–531.

Devaskar, S.U., Singh, B.S., Carnaghi, L.R., Rajakumar, P.A., and Giddings, S.J. 1993. Insulin II gene expression in rat central nervous system. Regul. Pept. 48: 55–63.

Dickson, M.C., Martin, J.S., Cousins, F.M., Kulkarni, A.B., Karlsson, S., and Akhurst, R.J. 1995. Defective haematopoiesis and vasculogenesis in transforming growth factor-{beta} 1 knock out mice. Development 121: 1845–1854.

Dieterlen-Lievre, F. 1975. On the origin of haemopoietic stem cells in the avian embryo: An experimental approach. J. Embryol. Exp. Morphol. 33: 607–619.

Ding, J., Yang, L., Yan, Y.T., Chen, A., Desai, N., Wynshaw-Boris, A., and Shen, M.M. 1998. Cripto is required for correct orientation of the anterior–posterior axis in the mouse embryo. Nature 395: 702–707.

Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. 1985. The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87: 27–45.

D'Souza, S., Elefanty, A.G., and Keller, G. 2005. Scl/Tal-1 is essential for hematopoietic commitment of the hemangioblast, but not for its development. Blood (in press).

Dykxhoorn, D.M., Novina, C.D., and Sharp, P.A. 2003. Killing the messenger: Short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4: 457–467.

Dziadek, M. and Adamson, E. 1978. Localization and synthesis of {alpha}foetoprotein in post-implantation mouse embryos. J. Embryol. Exp. Morphol. 43: 289–313.

Ema, M., Faloon, P., Zhang, W.J., Hirashima, M., Reid, T., Stanford, W.L., Orkin, S., Choi, K., and Rossant, J. 2003. Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes & Dev. 17: 380–393.

Eto, K., Murphy, R., Kerrigan, S.W., Bertoni, A., Stuhlmann, H., Nakano, T., Leavitt, A.D., and Shattil, S.J. 2002. Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc. Natl. Acad. Sci. 99: 12819–12824.

Evans, M. and Kaufman, M. 1981. Establishment in culture of pluripotent cells from mouse embryos. Nature 292: 154–156.

____. 1983. Pluripotential cells grown directly from normal mouse embryos. Cancer Surv. 2: 185–208.

Fairchild, P.J., Nolan, K.F., Cartland, S., Graca, L., and Waldmann, H. 2003. Stable lines of genetically modified dendritic cells from mouse embryonic stem cells. Transplantation 76: 606–608.

Faloon, P., Arentson, E., Kazarov, A., Deng, C.X., Porcher, C., Orkin, S., and Choi, K. 2000. Basic fibroblast growth factor positively regulates hematopoietic development. Development 127: 1931–1941.

Fehling, H.J., Lacaud, G., Kubo, A., Kennedy, M., Robertson, S., Keller, G., and Kouskoff, V. 2003. Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130: 4217–4227.

Ferkowicz, M.J., Starr, M., Xie, X., Li, W., Johnson, S.A., Shelley, W.C., Morrison, P.R., and Yoder, M.C. 2003. CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development 130: 4393–4403.

Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O'Shea, K.S., Powell-Braxton, L., Hillan, K.J., and Moore, M.W. 1996. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380: 439–442.

Finley, M.F., Devata, S., and Huettner, J.E. 1999. BMP-4 inhibits neural differentiation of murine embryonic stem cells. J. Neurobiol. 40: 271–287.

Fong, G.H., Rossant, J., Gertsenstein, M., and Breitman, M.L. 1995. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66–70.

Fong, G.H., Klingensmith, J., Wood, C.R., Rossant, J., and Breitman, M.L. 1996. Regulation of flt-1 expression during mouse embryogenesis suggests a role in the establishment of vascular endothelium. Dev. Dyn. 207: 1–10.

Fujikura, J., Yamato, E., Yonemura, S., Hosoda, K., Masui, S., Nakao, K., Miyazaki Ji, J., and Niwa, H. 2002. Differentiation of embryonic stem cells is induced by GATA factors. Genes & Dev. 16: 784–789.

Gamer, L.W. and Wright, C.V. 1995. Autonomous endodermal determination in Xenopus: Regulation of expression of the pancreatic gene XlHbox 8. Dev. Biol. 171: 240–251.

Gardner, R.L. and Rossant, J. 1979. Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J. Embryol. Exp. Morphol. 52: 141–152.

Geijsen, N., Horoschak, M., Kim, K., Gribnau, J., Eggan, K., and Daley, G.Q. 2004. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427: 148–154.

Giddings, S.J., King, C.D., Harman, K.W., Flood, J.F., and Carnaghi, L.R. 1994. Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nat. Genet. 6: 310–313.

Ginis, I., Luo, Y., Miura, T., Thies, S., Brandenberger, R., Gerecht-Nir, S., Amit, M., Hoke, A., Carpenter, M.K., Itskovitz-Eldor, J., et al. 2004. Differences between human and mouse embryonic stem cells. Dev. Biol. 269: 360–380.

Ginsburg, M., Snow, M.H., and McLaren, A. 1990. Primordial germ cells in the mouse embryo during gastrulation. Development 110: 521–528.

Godin, I., Dieterlen-Lièvre, F., and Cumano, A. 1995. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc. Natl. Acad. Sci. 92: 773–777.

Gratsch, T.E. and O'Shea, K.S. 2002. Noggin and chordin have distinct activities in promoting lineage commitment of mouse embryonic stem (ES) cells. Dev. Biol. 245: 83–94.

Green, J.B., New, H.V., and Smith, J.C. 1992. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71: 731–739.

Haar, J.L. and Ackerman, G.A. 1971. A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat. Rec. 170: 199–224.

Hamaguchi, I., Woods, N.B., Panagopoulos, I., Andersson, E., Mikkola, H., Fahlman, C., Zufferey, R., Carlsson, L., Trono, D., and Karlsson, S. 2000. Lentivirus vector gene expression during ES cell-derived hematopoietic development in vitro. J. Virol. 74: 10778–10784.

Hamaguchi-Tsuru, E., Nobumoto, A., Hirose, N., Kataoka, S., Fujikawa-Adachi, K., Furuya, M., and Tominaga, A. 2004. Development and functional analysis of eosinophils from murine embryonic stem cells. Br. J. Haematol. 124: 819–827.

Hamazaki, T., Iiboshi, Y., Oka, M., Papst, P.J., Meacham, A.M., Zon, L.I., and Terada, N. 2001. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. 497: 15–19.

Hamazaki, T., Oka, M., Yamanaka, S., and Terada, N. 2004. Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. J. Cell Sci. 117: 5681–5686.

Haub, O. and Goldfarb, M. 1991. Expression of the fibroblast growth factor-5 gene in the mouse embryo. Development 112: 397–406.

He, J.Q., Ma, Y., Lee, Y., Thomson, J.A., and Kamp, T.J. 2003. Human embryonic stem cells develop into multiple types of cardiac myocytes: Action potential characterization. Circ. Res. 93: 32–39.

Hebert, J.M., Boyle, M., and Martin, G.R. 1991. mRNA localization studies suggest that murine FGF-5 plays a role in gastrulation. Development 112: 407–415.

Hescheler, J., Fleischmann, B.K., Lentini, S., Maltsev, V.A., Rohwedel, J., Wobus, A.M., and Addicks, K. 1997. Embryonic stem cells: A model to study structural and functional properties in cardiomyogenesis. Cardiovasc. Res. 36: 149–162.

Hidaka, K., Lee, J.K., Kim, H.S., Ihm, C.H., Iio, A., Ogawa, M., Nishikawa, S., Kodama, I., and Morisaki, T. 2003. Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. FASEB J. 17: 740–742.

Hirashima, M., Kataoka, H., Nishikawa, S., and Matsuyoshi, N. 1999. Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood 93: 1253–1263.

Hochedlinger, K. and Jaenisch, R. 2003. Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N. Engl. J. Med. 349: 275–286.

Hogan, B.L. 1996. Bone morphogenetic proteins: Multifunctional regulators of vertebrate development. Genes & Dev. 10: 1580–1594

Hori, Y., Rulifson, I.C., Tsai, B.C., Heit, J.J., Cahoy, J.D., and Kim, S.K. 2002. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc. Natl. Acad. Sci. 99: 16105–16110

Hornstein, E. and Benvenisty, N. 2004. The "brainy side" of human embryonic stem cells. J. Neurosci. Res. 76: 169–173

Huber, T.L., Kouskoff, V., Fehling, H.J., Palis, J., and Keller, G. 2004. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432: 625–630

Hubner, K., Fuhrmann, G., Christenson, L.K., Kehler, J., Reinbold, R., De La Fuente, R., Wood, J., Strauss III, J.F., Boiani, M., and Scholer, H.R. 2003. Derivation of oocytes from mouse embryonic stem cells. Science 300: 1251–1256

Hwang, W.S., Ryu, Y.J., Park, J.H., Park, E.S., Lee, E.G., Koo, J.M., Jeon, H.Y., Lee, B.C., Kang, S.K., Kim, S.J., et al. 2004. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 303: 1669–1674.

Jones, E.A., Tosh, D., Wilson, D.I., Lindsay, S., and Forrester, L.M. 2002. Hepatic differentiation of murine embryonic stem cells. Exp. Cell Res. 272: 15–22.

Jordan, C., McKearn, J., and Lemischka, I. 1990. Cellular and developmental properties of fetal hematopoietic stem cells. Cell 61: 953–963.

Joyner, A.L. 1991. Gene targeting and gene trap screens using embryonic stem cells: New approaches to mammalian development. Bioessays 13: 649–656.

Kabrun, N., Buhring, H.J., Choi, K., Ullrich, A., Risau, W., and Keller, G. 1997. Flk-1 expression defines a population of early embryonic hematopoietic precursors. Development 124: 2039–2048.

Kahan, B.W., Jacobson, L.M., Hullett, D.A., Ochoada, J.M., Oberley, T.D., Lang, K.M., and Odorico, J.S. 2003. Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: An in vitro model to study islet differentiation. Diabetes 52: 2016–2024.

Kanai-Azuma, M., Kanai, Y., Gad, J.M., Tajima, Y., Taya, C., Kurohmaru, M., Sanai, Y., Yonekawa, H., Yazaki, K., Tam, P.P., et al. 2002. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129: 2367–2379.

Kanno, S., Kim, P.K., Sallam, K., Lei, J., Billiar, T.R., and Shears II, L.L. 2004. Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc. Natl. Acad. Sci. 101: 12277–12281.

Kaufman, D.S., Hanson, E.T., Lewis, R.L., Auerbach, R., and Thomson, J.A. 2001. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. 98: 10716–10721.

Kawai, T., Takahashi, T., Esaki, M., Ushikoshi, H., Nagano, S., Fujiwara, H., and Kosai, K. 2004. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ. J. 68: 691–702.

Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., Nishikawa, S.I., and Sasai, Y. 2000. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28: 31–40.

Kearney, J.B., Ambler, C.A., Monaco, K.A., Johnson, N., Rapoport, R.G., and Bautch, V.L. 2002. Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 99: 2397–2407.

Kehat, I. and Gepstein, L. 2003. Human embryonic stem cells for myocardial regeneration. Heart Fail. Rev. 8: 229–236.

Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein, L. 2001. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108: 407–414.

Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I., Satin, J., Itskovitz-Eldor, J., and Gepstein, L. 2004. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22: 1282–1289.

Keller, G. 1995. In vitro differentiation of embryonic stem cells. Curr. Opin. Cell Biol. 7: 862–869.

Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M. 1993. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. 13: 473–486.

Keller, G., Lacaud, G., and Robertson, S. 1999. Development of the hematopoietic system in the mouse. Exp. Hematol. 27: 777–787.

Kennedy, M., Firpo, M., Choi, K., Wall, C., Robertson, S., Kabrun, N., and Keller, G. 1997. A common precursor for primitive and definitive hematopoiesis. Nature 386: 488–493.

Kim, J.H., Auerbach, J.M., Rodriguez-Gomez, J.A., Velasco, I., Gavin, D., Lumelsky, N., Lee, S.H., Nguyen, J., Sanchez-Pernaute, R., Bankiewicz, K., et al. 2002. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418: 50–56.

Kinder, S.J., Tsang, T.E., Quinlan, G.A., Hadjantonakis, A.K., Nagy, A., and Tam, P.P. 1999. The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126: 4691–4701.

Kingsley, P.D., Malik, J., Fantauzzo, K.A., and Palis, J. 2004. Yolk sac-derived primitive erythroblasts enucleate during mammalian embryogenesis. Blood 104: 19–25.

Klug, M.G., Soonpaa, M.H., Koh, G.Y., and Field, L.J. 1996. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest. 98: 216–224.

Kolossov, E., Fleischmann, B.K., Liu, Q., Bloch, W., Viatchenko-Karpinski, S., Manzke, O., Ji, G.J., Bohlen, H., Addicks, K., and Hescheler, J. 1998. Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of the green fluorescent protein. J. Cell Biol. 143: 2045–2056.

Kondo, M., Wagers, A.J., Manz, M.G., Prohaska, S.S., Scherer, D.C., Beilhack, G.F., Shizuru, J.A., and Weissman, I.L. 2003. Biology of hematopoietic stem cells and progenitors: Implications for clinical application. Annu. Rev. Immunol. 21: 759–806.

Kramer, J., Hegert, C., Guan, K., Wobus, A.M., Muller, P.K., and Rohwedel, J. 2000. Embryonic stem cell-derived chondrogenic differentiation in vitro: Activation by BMP-2 and BMP-4. Mech. Dev. 92: 193–205.

Ku, H.T., Zhang, N., Kubo, A., O'Connor, R., Mao, M., Keller, G., and Bromberg, J.S. 2004. Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells 22: 1205–1217.

Kubo, A., Shinozaki, K., Shannon, J.M., Kouskoff, V., Kennedy, M., Woo, S., Fehling, H.J., and Keller, G. 2004. Development of definitive endoderm from embryonic stem cells in culture. Development 131: 1651–1662.

Kyba, M. and Daley, G.Q. 2003. Hematopoiesis from embryonic stem cells: Lessons from and for ontogeny. Exp. Hematol. 31: 994–1006.

Kyba, M., Perlingeiro, R.C., and Daley, G.Q. 2002. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109: 29–37.

Lacaud, G., Gore, L., Kennedy, M., Kouskoff, V., Kingsley, P., Hogan, C., Carlsson, L., Speck, N., Palis, J., and Keller, G. 2002. Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro. Blood 100: 458–466.

Lake, J., Rathjen, J., Remiszewski, J., and Rathjen, P.D. 2000. Reversible programming of pluripotent cell differentiation. J. Cell Sci. 113 (Pt 3): 555–566.

Lang, K.J., Rathjen, J., Vassilieva, S., and Rathjen, P.D. 2004. Differentiation of embryonic stem cells to a neural fate: A route to re-building the nervous system? J. Neurosci. Res. 76: 184–192.

Laverriere, A.C., MacNeill, C., Mueller, C., Poelmann, R.E., Burch, J.B., and Evans, T. 1994. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J. Biol. Chem. 269: 23177–23184.

Lawson, K.A., Dunn, N.R., Roelen, B.A., Zeinstra, L.M., Davis, A.M., Wright, C.V., Korving, J.P., and Hogan, B.L. 1999. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes & Dev. 13: 424–436.

Lendahl, U., Zimmerman, L.B., and McKay, R.D. 1990. CNS stem cells express a new class of intermediate filament protein. Cell 60: 585–595.

Levenberg, S., Golub, J.S., Amit, M., Itskovitz-Eldor, J., and Langer, R. 2002. Endothelial cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. 99: 4391–4396.

Li, M., Pevny, L., Lovell-Badge, R., and Smith, A. 1998. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8: 971–974.

Lieber, J.G., Webb, S., Suratt, B.T., Young, S.K., Johnson, G.L., Keller, G.M., and Worthen, G.S. 2004. The in vitro production and characterization of neutrophils from embryonic stem cells. Blood 103: 852–859.

Lin, R.Y., Kubo, A., Keller, G.M., and Davies, T.F. 2003. Committing embryonic stem cells to differentiate into thyrocyte-like cells in vitro. Endocrinology 144: 2644–2649.

Liu, S., Qu, Y., Stewart, T.J., Howard, M.J., Chakrabortty, S., Holekamp, T.F., and McDonald, J.W. 2000. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl. Acad. Sci. 97: 6126–6131.

Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., and McKay, R. 2001. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292: 1389–1394.

Ma, Y., Ramezani, A., Lewis, R., Hawley, R.G., and Thomson, J.A. 2003. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 21: 111–117.

Maltsev, V.A., Rohwedel, J., Hescheler, J., and Wobus, A.M. 1993. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44: 41–50.

Marchetti, S., Gimond, C., Iljin, K., Bourcier, C., Alitalo, K., Pouyssegur, J., and Pages, G. 2002. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo. J. Cell Sci. 115: 2075–2085.

Martin, G. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. 78: 7635.

Matin, M.M., Walsh, J.R., Gokhale, P.J., Draper, J.S., Bahrami, A.R., Morton, I., Moore, H.D., and Andrews, P.W. 2004. Specific knockdown of Oct4 and {beta}2-microglobulin expression by RNA interference in human embryonic stem cells and embryonic carcinoma cells. Stem Cells 22: 659–668.

Matsuda, T., Nakamura, T., Nakao, K., Arai, T., Katsuki, M., Heike, T., and Yokota, T. 1999. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 18: 4261–4269.

Matsuyoshi, N., Toda, K., Horiguchi, Y., Tanaka, T., Nakagawa, S., Takeichi, M., and Imamura, S. 1997. In vivo evidence of the critical role of cadherin-5 in murine vascular integrity. Proc. Assoc. Am. Physicians 109: 362–371.

Matzuk, M.M., Kumar, T.R., and Bradley, A. 1995. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374: 356–360.

McDonald, J.W., Liu, X.Z., Qu, Y., Liu, S., Mickey, S.K., Turetsky, D., Gottlieb, D.I., and Choi, D.W. 1999. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5: 1410–1412.

McGrath, K.E. and Palis, J. 1997. Expression of homeobox genes, including an insulin promoting factor, in the murine yolk sac at the time of hematopoietic initiation. Mol. Reprod. Dev. 48: 145–153.

Medvinsky, A. and Dzierzak, E. 1996. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86: 897–906.

Meehan, R.R., Barlow, D.P., Hill, R.E., Hogan, B.L., and Hastie, N.D. 1984. Pattern of serum protein gene expression in mouse visceral yolk sac and foetal liver. EMBO J. 3: 1881–1885.

Melloul, D., Marshak, S., and Cerasi, E. 2002. Regulation of insulin gene transcription. Diabetologia 45: 309–326.

Metcalf, D. and Moore, M. 1971. Haemopoietic cells. In Frontiers in biology (eds. A. Neuberger and E.L. Tatum). North-Holland, London.

Micallef, S.J., Janes, M.E., Knezevic, K., Davis, R.P., Elefanty, A.G., and Stanley, E.G. 2005. Retinoic acid induces Pdx1-positive endoderm in differentiating mouse embryonic stem cells. Diabetes 54: 301–305.

Mikkola, H.K., Fujiwara, Y., Schlaeger, T.M., Traver, D., and Orkin, S.H. 2003. Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. Blood 101: 508–516.

Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N.P., Risau, W., and Ullrich, A. 1993. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835–846.

Min, J.Y., Yang, Y., Converso, K.L., Liu, L., Huang, Q., Morgan, J.P., and Xiao, Y.F. 2002. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92: 288–296.

Min, J.Y., Yang, Y., Sullivan, M.F., Ke, Q., Converso, K.L., Chen, Y., Morgan, J.P., and Xiao, Y.F. 2003. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg. 125: 361–369.

Mitjavila-Garcia, M.T., Cailleret, M., Godin, I., Nogueira, M.M., Cohen-Solal, K., Schiavon, V., Lecluse, Y., Le Pesteur, F., Lagrue, A.H., and Vainchenker, W. 2002. Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development 129: 2003–2013.

Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113: 631–642.

Miyazaki, S., Yamato, E., and Miyazaki, J. 2004. Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53: 1030–1037.

Monaghan, A.P., Kaestner, K.H., Grau, E., and Schutz, G. 1993. Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 {alpha}, {beta} and {gamma} genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119: 567–578.

Moore, M.A. and Metcalf, D. 1970. Ontogeny of the haemopoietic system: Yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br. J. Haematol. 18: 279–296.

Muller, A. and Dzierzak, E. 1993. ES cells have only a limited lymphopoietic potential after adoptive transfer into mouse recipient. Development 118: 1343–1351.

Muller, A.M., Medvinsky, A., Strouboulis, J., Grosveld, F., and Dzierzak, E. 1994. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1: 291–301.

Muller, M., Fleischmann, B.K., Selbert, S., Ji, G.J., Endl, E., Middeler, G., Muller, O.J., Schlenke, P., Frese, S., Wobus, A.M., et al. 2000. Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J. 14: 2540–2548.

Mummery, C., Ward, D., van den Brink, C.E., Bird, S.D., Doevendans, P.A., Opthof, T., Brutel de la Riviere, A., Tertoolen, L., van der Heyden, M., and Pera, M. 2002. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J. Anat. 200: 233–242.

Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., van der Heyden, M., Opthof, T., Pera, M., de la Riviere, A.B., et al. 2003. Differentiation of human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like cells. Circulation 107: 2733–2740.

Munsie, M.J., Michalska, A.E., O'Brien, C.M., Trounson, A.O., Pera, M.F., and Mountford, P.S. 2000. Isolation of pluripotent embryonic stem cells from reprogrammed adult mouse somatic cell nuclei. Curr. Biol. 10: 989–992.

Murray, P.D.F. 1932. The development of in vitro of the blood of the early chick embryo. Proc. Roy. Soc. London 11: 497–521.

Murtaugh, L.C. and Melton, D.A. 2003. Genes, signals, and lineages in pancreas development. Annu. Rev. Cell Dev. Biol. 19: 71–89.

Nakano, T., Kodama, H., and Honjo, T. 1994. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265: 1098–1101.

Nakayama, N., Lee, J., and Chiu, L. 2000. Vascular endothelial growth factor synergistically enhances bone morphogenetic protein-4-dependent lymphohematopoietic cell generation from embryonic stem cells in vitro. Blood 95: 2275–2283.

Ninomiya, H., Takahashi, S., Tanegashima, K., Yokota, C., and Asashima, M. 1999. Endoderm differentiation and inductive effect of activin-treated ectoderm in Xenopus. Dev. Growth Differ. 41: 391–400.

Nir, S.G., David, R., Zaruba, M., Franz, W.M., and Itskovitz-Eldor, J. 2003. Human embryonic stem cells for cardiovascular repair. Cardiovasc. Res. 58: 313–323.

Nishikawa, S., Nishikawa, S., Hirashima, M., Matsuyoshi, N., and Kodama, H. 1998. Progressive lineage analysis by cell sorting and culture identifies FLK+VE-cadherin cells at a diverging point of endothelial and hemopoietic lineages. Development 125: 1747–1757.

Niwa, H., Burdon, T., Chambers, I., and Smith, A. 1998. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes & Dev. 12: 2048–2060.

Niwa, H., Miyazaki, J., and Smith, A.G. 2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24: 372–376.

Odorico, J.S., Kaufman, D.S., and Thomson, J.A. 2001. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19: 193–204.

Ogawa, E., Inuzuka, M., Maruyama, M., Satake, M., Naito-Fujimoto, M., Ito, Y., and Shigesada, K. 1993. Molecular cloning and characterization of PEBP2 {beta}, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 {alpha}. Virology 194: 314–331.

Okabe, S., Forsberg-Nilsson, K., Spiro, A.C., Segal, M., and McKay, R.D. 1996. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59: 89–102.

Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G., and Downing, J.R. 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330.

Orkin, S. 1992. GATA-binding transcription factors in hematopoietic cells. Blood 80: 575–581.

Overturf, K., al-Dhalimy, M., Ou, C.N., Finegold, M., and Grompe, M. 1997. Serial transplantation reveals the stemcell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathol. 151: 1273–1280.

Palis, J., McGrath, K.E., and Kingsley, P.D. 1995. Initiation of hematopoiesis and vasculogenesis in murine yolk sac explants. Blood 86: 156–163.

Palis, J., Roberston, S., Kennedy, M., Wall, C., and Keller, G. 1999. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126: 5073–5084.

Parisi, S., D'Andrea, D., Lago, C.T., Adamson, E.D., Persico, M.G., and Minchiotti, G. 2003. Nodal-dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells. J. Cell Biol. 163: 303–314.

Park, C., Afrikanova, I., Chung, Y.S., Zhang, W.J., Arentson, E., Fong Gh, G., Rosendahl, A., and Choi, K. 2004. A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development 131: 2749–2762.

Pera, M.F. and Trounson, A.O. 2004. Human embryonic stem cells: Prospects for development. Development 131: 5515–5525.

Pera, M.F., Andrade, J., Houssami, S., Reubinoff, B., Trounson, A., Stanley, E.G., Ward-van Oostwaard, D., and Mummery, C. 2004. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J. Cell Sci. 117: 1269–1280.

Perrier, A.L., Tabar, V., Barberi, T., Rubio, M.E., Bruses, J., Topf, N., Harrison, N.L., and Studer, L. 2004. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. 101: 12543–12548.

Pevny, L., Simon, M.C., Robertson, E., Klein, W.H., Tsai, S.F., D'Agati, V., Orkin, S.H., and Costantini, F. 1991. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349: 257–260.

Phillips, D.R., Charo, I.F., Parise, L.V., and Fitzgerald, L.A. 1988. The platelet membrane glycoprotein IIb–IIIa complex. Blood 71: 831–843.

Pinto do, O.P., Kolterud, A., and Carlsson, L. 1998. Expression of the LIM-homeobox gene LH2 generates immortalized steel factor-dependent multipotent hematopoietic precursors. EMBO J. 17: 5744–5756.

Porcher, C., Swat, W., Rockwell, K., Fujiwara, Y., Alt, F.W., and Orkin, S.H. 1996. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86: 47–57.

Rajagopal, J., Anderson, W.J., Kume, S., Martinez, O.I., and Melton, D.A. 2003. Insulin staining of ES cell progeny from insulin uptake. Science 299: 363.

Rambhatla, L., Chiu, C.P., Kundu, P., Peng, Y., and Carpenter, M.K. 2003. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 12: 1–11.

Rathjen, J., Lake, J.A., Bettess, M.D., Washington, J.M., Chapman, G., and Rathjen, P.D. 1999. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J. Cell Sci. 112 (Pt 5): 601–612.

Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A., and Bongso, A. 2000. Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nat. Biotechnol. 18: 399–404.

Reubinoff, B.E., Itsykson, P., Turetsky, T., Pera, M.F., Reinhartz, E., Itzik, A., and Ben-Hur, T. 2001. Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19: 1134–1140.

Richards, M., Tan, S.P., Tan, J.H., Chan, W.K., and Bongso, A. 2004. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22: 51–64.

Rideout III, W.M., Hochedlinger, K., Kyba, M., Daley, G.Q., and Jaenisch, R. 2002. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109: 17–27.

Rippon, H.J. and Bishop, A.E. 2004. Embryonic stem cells. Cell Prolif. 37: 23–34.

Robb, L., Lyons, I., Li, R., Hartley, L., Kontgen, F., Harvey, R.P., Metcalf, D., and Begley, C.G. 1995. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl. Acad. Sci. 92: 7075–7079.

Robertson, S.M., Kennedy, M., Shannon, J.M., and Keller, G. 2000. A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1. Development 127: 2447–2459.

Rogers, M.B., Hosler, B.A., and Gudas, L.J. 1991. Specific expression of a retinoic acid-regulated, zinc-finger gene, Rex-1, in preimplantation embryos, trophoblast and spermatocytes. Development 113: 815–824.

Rohwedel, J., Maltsev, V., Bober, E., Arnold, H.H., Hescheler, J., and Wobus, A.M. 1994. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: Developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164: 87–101.

Rossant, J. 1977. Cell commitment in early rodent development. Dev. Mamm. 2: 119–150.

Russel, E. 1979. Heriditary anemias of the mouse: A review for geneticists. Adv. Genet. 20: 357–459.

Sabin, F.R. 1920. Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of the chick during the second day of incubation. Contrib. Embryol. 9: 213–262.

Sasai, Y., Lu, B., Steinbeisser, H., and De Robertis, E.M. 1995. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376: 333–336.

Sasaki, H. and Hogan, B.L. 1993. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118: 47–59.

Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., and Brivanlou, A.H. 2004. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10: 55–63.

Schier, A.F. and Shen, M.M. 2000. Nodal signalling in vertebrate development. Nature 403: 385–389.

Schmitt, R., Bruyns, E., and Snodgrass, H. 1991. Hematopoietic development of embryonic stem cells in vitro: Cytokine and receptor gene expression. Genes & Dev. 5: 728–740.

Schmitt, T.M., de Pooter, R.F., Gronski, M.A., Cho, S.K., Ohashi, P.S., and Zuniga-Pflucker, J.C. 2004. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat. Immunol. 5: 410–417.

Schroeder, T., Fraser, S.T., Ogawa, M., Nishikawa, S., Oka, C., Bornkamm, G.W., Honjo, T., and Just, U. 2003. Recombination signal sequence-binding protein J{kappa} alters mesodermal cell fate decisions by suppressing cardiomyogenesis. Proc. Natl. Acad. Sci. 100: 4018–4023.

Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D.A., and Benvenisty, N. 2000. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. 97: 11307–11312.

Sellem, C.H., Frain, M., Erdos, T., and Sala-Trepat, J.M. 1984. Differential expression of albumin and {alpha}-fetoprotein genes in fetal tissues of mouse and rat. Dev. Biol. 102: 51–60.

Shalaby, F., Rossant, J., Yamaguchi, T.P., Gertsenstein, M., Wu, X.-F., Breitman, M.L., and Schuh, A.C. 1995. Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature 376: 62–66.

Shivdasani, R., Mayer, E., and Orkin, S.H. 1995. Absence of blood formation in mice lacking the T-cell leukemia oncoprotein tal-1/SCL. Nature 373: 432–434.

Simon, H.H., Bhatt, L., Gherbassi, D., Sgado, P., and Alberi, L. 2003. Midbrain dopaminergic neurons: Determination of their developmental fate by transcription factors. Ann. NY Acad. Sci. 991: 36–47.

Sipione, S., Eshpeter, A., Lyon, J.G., Korbutt, G.S., and Bleackley, R.C. 2004. Insulin expressing cells from differentiated embryonic stem cells are not {beta} cells. Diabetologia 47: 499–508.

Smith, A.G. 2001. Embryo-derived stem cells: Of mice and men. Annu. Rev. Cell Dev. Biol. 17: 435–462.

Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J., Stahl, M., and Rogers, D. 1988. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336: 688–690.

Snir, M., Kehat, I., Gepstein, A., Coleman, R., Itskovitz-Eldor, J., Livne, E., and Gepstein, L. 2003. Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 285: H2355–H2363.

Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J.A., and Martin, F. 2000. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 49: 157–162.

Soudais, C., Bielinska, M., Heikinheimo, M., MacArthur, C.A., Narita, N., Saffitz, J.E., Simon, M.C., Leiden, J.M., and Wilson, D.B. 1995. Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development 121: 3877–3888.

Stamatoyannopoulos, G. and Grosveld, F. 2001. Hemoglobin switching. In The molecular basis of blood diseases (eds. G. Stamatoyannopoulos et al.), pp. 135–165. W.B. Saunders, New York.

Stewart, C.L., Kaspar, P., Brunet, L.J., Bhatt, H., Gadi, I., Kontgen, F., and Abbondanzo, S.J. 1992. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor [see comments]. Nature 359: 76–79.

Stoffel, M., Vallier, L., and Pedersen, R.A. 2004. Navigating the pathway from embryonic stem cells to {beta} cells. Semin. Cell Dev. Biol. 15: 327–336.

Sun, X., Meyers, E.N., Lewandoski, M., and Martin, G.R. 1999. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes & Dev. 13: 1834–1846.

Takahashi, T., Lord, B., Schulze, P.C., Fryer, R.M., Sarang, S.S., Gullans, S.R., and Lee, R.T. 2003. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107: 1912–1916.

Takakura, N., Huang, X.L., Naruse, T., Hamaguchi, I., Dumont, D.J., Yancopoulos, G.D., and Suda, T. 1998. Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity 9: 677–686.

Tam, P.P. and Behringer, R.R. 1997. Mouse gastrulation: The formation of a mammalian body plan. Mech. Dev. 68: 3–25.

Thomas, P. and Beddington, R. 1996. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6: 1487–1496.

Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Walnitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147.

Toyooka, Y., Tsunekawa, N., Akasu, R., and Noce, T. 2003. Embryonic stem cells can form germ cells in vitro. Proc. Natl. Acad. Sci. 100: 11457–11462.

Tropepe, V., Hitoshi, S., Sirard, C., Mak, T.W., Rossant, J., and van der Kooy, D. 2001. Direct neural fate specification from embryonic stem cells: A primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30: 65–78.

Tsai, M., Wedemeyer, J., Ganiatsas, S., Tam, S.Y., Zon, L.I., and Galli, S.J. 2000. In vivo immunological function of mast cells derived from embryonic stem cells: An approach for the rapid analysis of even embryonic lethal mutations in adult mice in vivo. Proc. Natl. Acad. Sci. 97: 9186–9190.

Vassalli, A., Matzuk, M.M., Gardner, H.A., Lee, K.F., and Jaenisch, R. 1994. Activin/inhibin {beta} B subunit gene disruption leads to defects in eyelid development and female reproduction. Genes & Dev. 8: 414–427.

Velkey, J.M. and O'Shea, K.S. 2003. Oct4 RNA interference induces trophectoderm differentiation in mouse embryonic stem cells. Genesis 37: 18–24.

Verlinsky, Y., Strelchenko, N., Kukharenko, V., Rechitsky, S., Verlinsky, O., Galat, V., and Kuliev, A. 2005. Human embryonic stem cell lines with genetic disorders. Reprod. Biomed. Online 10: 105–110.

Vittet, D., Prandini, M.H., Berthier, R., Schweitzer, A., Martin-Sisteron, H., Uzan, G., and Dejana, E. 1996. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88: 3424–3431.

Vodyanik, M.A., Bork, J.A., Thomson, J.A., and Slukvin, I.I. 2005. Human embryonic stem cell-derived CD34+ cells: Efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105: 617–626.

Wakayama, T., Tabar, V., Rodriguez, I., Perry, A.C., Studer, L., and Mombaerts, P. 2001. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292: 740–743.

Wang, S.W. and Speck, N.A. 1992. Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Mol. Cell. Biol. 12: 89–102.

Wang, R., Clark, R., and Bautch, V.L. 1992. Embryonic stem cell-derived cystic embryoid bodies form vascular channels: An in vitro model of blood vessel development. Development 114: 303–316.

Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A., and Speck, N. 1996. Disruption of the Cbfa2 gene causes necrosis and hemorraging in the central nervous system and- blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. 93: 3444–3449.

Wang, L., Li, L., Shojaei, F., Levac, K., Cerdan, C., Menendez, P., Martin, T., Rouleau, A., and Bhatia, M. 2004. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 21: 31–41.

Wang, Z., Cohen, K., Shao, Y., Mole, P., Dombkowski, D., and Scadden, D.T. 2004. Ephrin receptor, EphB4, regulates ES cell differentiation of primitive mammalian hemangioblasts, blood, cardiomyocytes, and blood vessels. Blood 103: 100–109.

Watt, S.M., Gschmeissner, S.E., and Bates, P.A. 1995. PECAM-1: Its expression and function as a cell adhesion molecule on hemopoietic and endothelial cells. Leuk. Lymphoma 17: 229–244.

Weiss, M., Keller, G., and Orkin, S. 1994. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1-embryonic stem cells. Genes & Dev. 8: 1184–1197.

Wert, S.E., Glasser, S.W., Korfhagen, T.R., and Whitsett, J.A. 1993. Transcriptional elements from the human SP-C gene direct expression in the primordial respiratory epithelium of transgenic mice. Dev. Biol. 156: 426–443.

West, J.A. and Daley, G.Q. 2004. In vitro gametogenesis from embryonic stem cells. Curr. Opin. Cell Biol. 16: 688–692.

Whitman, M. 2001. Nodal signaling in early vertebrate embryos: Themes and variations. Dev. Cell 1: 605–617.

Wichterle, H., Lieberam, I., Porter, J.A., and Jessell, T.M. 2002. Directed differentiation of embryonic stem cells into motor neurons. Cell 110: 385–397.

Wiles, M.V. and Johansson, B.M. 1999. Embryonic stem cell development in a chemically defined medium. Exp. Cell Res. 247: 241–248.

Williams, R.L., Hilton, D.J., Pease, S., Willson, T.A., Stewart, C.L., Gearing, D.P., Wagner, E.F., Metcalf, D., Nicola, N.A., and Gough, N.M. 1988. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336: 684–687.

Wilson, P.A., Lagna, G., Suzuki, A., and Hemmati-Brivanlou, A. 1997. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124: 3177–3184.

Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P., Gold, J.D., and Carpenter, M.K. 2001. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19: 971–974.

Xu, R.H., Chen, X., Li, D.S., Li, R., Addicks, G.C., Glennon, C., Zwaka, T.P., and Thomson, J.A. 2002. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20: 1261–1264.

Yamada, T., Yoshikawa, M., Kanda, S., Kato, Y., Nakajima, Y., Ishizaka, S., and Tsunoda, Y. 2002a. In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells 20: 146–154.

Yamada, T., Yoshikawa, M., Takaki, M., Torihashi, S., Kato, Y., Nakajima, Y., Ishizaka, S., and Tsunoda, Y. 2002b. In vitro functional gut-like organ formation from mouse embryonic stem cells. Stem Cells 20: 41–49.

Yamaguchi, T.P. 2001. Heads or tails: Wnts and anterior–posterior patterning. Curr. Biol. 11: R713–R724.

Yamaguchi, T.P. and Rossant, J. 1995. Fibroblast growth factors in mammalian development. Curr. Opin. Genet. Dev. 5: 485–491.

Yamaguchi, T.P., Dumont, D.J., Conlon, R.A., Breitman, M.L., and Rossant, J. 1993. flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development 118: 489–498.

Yamashita, J., Itoh, H., Hirashima, M., Ogawa, M., Nishikawa, S., Yurugi, T., Naito, M., and Nakao, K. 2000. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408: 92–96.

Yang, Y., Min, J.Y., Rana, J.S., Ke, Q., Cai, J., Chen, Y., Morgan, J.P., and Xiao, Y.F. 2002. VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells. J. Appl. Physiol. 93: 1140–1151.

Ye, W., Shimamura, K., Rubenstein, J.L., Hynes, M.A., and Rosenthal, A. 1998. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93: 755–766.

Ying, Q.L., Nichols, J., Chambers, I., and Smith, A. 2003a. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115: 281–292.

Ying, Q.L., Stavridis, M., Griffiths, D., Li, M., and Smith, A. 2003b. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21: 183–186.

Yoshida, H., Hayashi, S., Kunisada, T., Ogawa, M., Nishikawa, S., Okamura, H., Sudo, T., and Shultz, L.D. 1990. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature 345: 442–444.

Young, P.E., Baumhueter, S., and Lasky, L.A. 1995. The sialomucin CD34 is expressed on hematopoietic cells and blood vessels during murine development. Blood 85: 96–105.

Yurugi-Kobayashi, T., Itoh, H., Yamashita, J., Yamahara, K., Hirai, H., Kobayashi, T., Ogawa, M., Nishikawa, S., and Nakao, K. 2003. Effective contribution of transplanted vascular progenitor cells derived from embryonic stem cells to adult neovascularization in proper differentiation stage. Blood 101: 2675–2678.

Zandstra, P.W., Bauwens, C., Yin, T., Liu, Q., Schiller, H., Zweigerdt, R., Pasumarthi, K.B., and Field, L.J. 2003. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 9: 767–778.

Zeng, X., Cai, J., Chen, J., Luo, Y., You, Z.B., Fotter, E., Wang, Y., Harvey, B., Miura, T., Backman, C., et al. 2004. Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22: 925–940.

Zhang, S.C., Wernig, M., Duncan, I.D., Brustle, O., and Thomson, J.A. 2001. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19: 1129–1133.

Zippo, A., De Robertis, A., Bardelli, M., Galvagni, F., and Oliviero, S. 2004. Identification of Flk-1 target genes in vasculogenesis: Pim-1 is required for endothelial and mural cell differentiation in vitro. Blood 103: 4536–4544.

zur Nieden, N.I., Kempka, G., and Ahr, H.J. 2003. In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71: 18–27.

Zwaka, T.P. and Thomson, J.A. 2003. Homologous recombination in human embryonic stem cells. Nat. Biotechnol. 21: 319–321.

rating: 5.60 from 15 votes | updated on: 27 Jun 2007 | views: 61592 |

Rate article: