table of contents table of contents

In this review, current studies/knowledge about peripheral blood-derived multipotent mesenchymal stromal …

Home » Biology Articles » Cell biology » Concise Review: Multipotent Mesenchymal Stromal Cells in Blood » References

- Concise Review: Multipotent Mesenchymal Stromal Cells in Blood

  1. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970;3:393–403.

  2. Friedenstein AJ. Stromal-hematopoietic interrelationships: Maximov's ideas and modern models. Haematol Blood Transfus 1989;32:159–167.

  3. Tocci A, Forte L. Mesenchymal stem cell: use and perspectives. Hematol J 2003;4:92–96

  4. Friedenstein AJ. Marrow stromal fibroblasts. Calcif Tissue Int 1995;56 (suppl 1):S17.

  5. Bianco P, Gehron Robey P. Marrow stromal stem cells. J Clin Invest 2000;105:1663–1668

  6. Bianco P, Riminucci M, Gronthos S et al. Bone marrow stromal stem cells: nature, biology, and potential applications. STEM CELLS 2001;19:180–192

  7. Friedenstein A, Kuralesova AI. Osteogenic precursor cells of bone marrow in radiation chimeras. Transplantation 1971;12:99–108.

  8. Friedenstein AJ, Deriglasova UF, Kulagina NN et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974;2:83–92.

  9. Friedenstein AJ, Chailakhyan RK, Latsinik NV et al. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974;17:331–340.

  10. Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol 1976;47:327–359.

  11. Friedenstein AJ. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus 1980;25:19–29.

  12. Friedenstein AJ, Latzinik NW, Grosheva AG et al. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol 1982;10:217–227.

  13. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 1987;20:263–272.

  14. Luria EA, Owen ME, Friedenstein AJ et al. Bone formation in organ cultures of bone marrow. Cell Tissue Res 1987;248:449–454.

  15. Owen ME, Friedenstein AJ. Stromal stem cells: marrow derived osteogenic precursors. In: Evered D, Harnett S, eds. Cellular and molecular biology of vertebrate hard tissue.London, U.K.: Royal Society,1988;42–52.

  16. Friedenstein AJ. Osteogenic stem cells in bone marrow. In: Heersche JNM, Kanis JA, eds. Bone and mineral research.Amsterdam, The Netherlands: Elsevier Science Publishers,1990;243–272.

  17. Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147

  18. Krebsbach PH, Kuznetsov SA, Bianco P et al. Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 1999;10:165–181.

  19. Pittenger MF, Mosca JD, McIntosh KR. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Top Microbiol Immunol 2000;251:3–11.

  20. Liechty KW, MacKenzie TC, Shaaban AF et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000;6:1282–1286.

  21. Vaananen HK. Mesenchymal stem cells. Ann Med 2005;37:469–479.

  22. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276:71–74.

  23. Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–49.

  24. Toma C, Pittenger MF, Cahill KS. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93–98.

  25. Gregory CA, Prockop DJ, Spees JL. Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp Cell Res 2005;306:330–335.

  26. Huss R, Hoy CA, Deeg HJ. Contact- and growth factor-dependent survival in a canine marrow-derived stromal cell line. Blood 1995;85:2414–2421

  27. Huss R. CD34- stem cells as the earliest precursors of hematopoietic progeny. Exp Hematol 1998;26:1022–1023

  28. Till JE, Mcculloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961;14:213–222.

  29. Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000;100:157–168.

  30. Owen M. Marrow stromal stem cells. J Cell Sci 1988;10:63–76

  31. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9:641–650.

  32. Horwitz EM, Le Blanc K, Dominici M et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005;7:393–395.

  33. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991;78:55–62

  34. Le Blanc K, Tammik C, Rosendahl K et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003;31:890–896.

  35. Di Nicola M, Carlo-Stella C, Magni M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99:3838–3843

  36. Mackenzie TC, Flake AW. Multilineage differentiation of human MSC after in utero transplantation. Cytotherapy 2001;3:403–405.

  37. Baxter MA, Wynn RF, Deakin JA et al. Retrovirally mediated correction of bone marrow-derived mesenchymal stem cells from patients with mucopolysaccharidosis type I. Blood 2002;99:1857–1859

  38. Chuah MK, Van Damme A, Zwinnen H et al. Long-term persistence of human bone marrow stromal cells transduced with factor VIII-retroviral vectors and transient production of therapeutic levels of human factor VIII in nonmyeloablated immunodeficient mice. Hum Gene Ther 2000;11:729–738

  39. Pereboeva L, Komarova S, Mikheeva G et al. Approaches to utilize mesenchymal progenitor cells as cellular vehicles. STEM CELLS 2003;21:389–404

  40. Koc ON, Gerson SL, Cooper BW et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000;18:307–316.

  41. Horwitz EM, Prockop DJ, Fitzpatrick LA et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999;5:309–313.

  42. Maximo A. Experimentelle Untersuchungen über entzündliche Neubildung von Bindegewebe. Zieglers Beitr z path Anat u allg Path 1902; (suppl)S5.

  43. Maximow AA. Culture of blood leucocytes: from lymphocyte and monocyte to connective tissues. Arch Exp Zellforsch 1928;5:169–268.

  44. Ehrich W. Die Leukocyten und ihre Entstehung. VII Die Leukocyten in der Gewebekultur. Ergeb Allg Pathol Pathol Anat 1934;29:1.

  45. Hulliger L. Differentiable developmental potencies of blood and lymph cells in vitro. Virchows Arch 1956;329:289–318.

  46. Paul J. Establishment of permanent cell strains from human adult peripheral blood. Nature 1958;182:808.

  47. Allgöwer M, Hulliger L, Basel MD. Origin of fibroblasts from mononuclear blood cells: A study on in vitro formation of the collagen precusor, hydroxyproline, in buffy coat cultures. Surgery 1960;47:603–610.

  48. Stirling GA, Kakkar VV. Cells in the circulating blood capable of producing connective tissue. Br J Exp Pathol 1969;50:51–55.

  49. Ross R, Lillywhite JW. The fate of buffy coat cells grown in subcutaneously implanted diffusion chambers. A light and electron microscopic study. Lab Invest 1965;14:1568–1585.

  50. Rangan SR. Origin of the fibroblastic growths in chicken buffy coat macrophage cultures. Exp Cell Res 1967;46:477–487.

  51. Kalus M, Ghidoni JJ, O'Neal RM. Human buffy coat in three-dimensional matrix tissue cultures and monolayers. Pathol Microbiol (Basel) 1968;31:353–364.

  52. Luria EA, Panasyuk AF, Friedenstein AY. Fibroblast colony formation from monolayer cultures of blood cells. Transfusion 1971;11:345–349.

  53. Kuznetsov SA, Mankani MH, Gronthos S et al. Circulating skeletal stem cells. J Cell Biol 2001;153:1133–1140

  54. Wan C, He Q, Li G. Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna critical-sized bone defect model. J Orthop Res 2006;24:610–618

  55. Klein AK, Dyck JA, Stitzel KA et al. Characterization of canine fetal lymphohematopoiesis: studies of CFUGM, CFUL, and CFUF. Exp Hematol 1983;11:263–274

  56. Huss R, Lange C, Weissinger EM et al. Evidence of peripheral blood-derived, plasticadherent CD34(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. STEM CELLS 2000;18:252–260

  57. Metcalf D. Formation in agar of fibroblast-like colonies by cells from the mouse pleural cavity and other sources. J Cell Physiol 1972;80:409–419

  58. Piersma AH, Ploemacher RE, Brockbank KG et al. Migration of fibroblastoid stromal cells in murine blood. Cell Tissue Kinet 1985;18:589–595

  59. Wu GD, Nolta JA, Jin YS et al. Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation 2003;75:679–685

  60. Fernandez M, Simon V, Herrera G et al. Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant 1997;20:265–271.

  61. Conrad C, Gottgens B, Kinston S et al. GATA transcription in a small rhodamine 123(low)CD34(+) subpopulation of a peripheral blood-derived CD34(-)CD105(+) mesenchymal cell line. Exp Hematol 2002;30:887–895.

  62. Tondreau T, Meuleman N, Delforge A et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. STEM CELLS 2005;23:1105–1112

  63. Cao C, Dong Y, Dong Y. Study on culture and in vitro osteogenesis of blood-derived human mesenchymal stem cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2005;19:642–647.

  64. Moosmann S, Hutter J, Moser C et al. Milieu-adopted in vitro and in vivo differentiation of mesenchymal tissues derived from different adult human CD34-negative progenitor cell clones. Cells Tissues Organs 2005;179:91–101

  65. Wang Y, Johnsen HE, Mortensen S et al. Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart 2006;92:768–774.

  66. Kassis I, Zangi L, Rivkin R et al. Isolation of mesenchymal stem cells from G-CSF mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 2006;37:967–976

  67. Kuznetsov S, Gehron Robey P. Species differences in growth requirements for bone marrow stromal fibroblast colony formation In vitro. Calcif Tissue Int 1996;59:265–270

  68. Castro-Malaspina H, Gay RE, Resnick G et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 1980;56:289–301

  69. Simmons PJ, Torok-Storb B. CD34 expression by stromal precursors in normal human adult bone marrow. Blood 1991;78:2848–2853.

  70. Waller EK, Olweus J, Lund-Johansen F et al. The "common stem cell" hypothesis reevaluated: human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors. Blood 1995;85:2422–2435

  71. Ojeda-Uribe M, Brunot A, Lenat A et al. Failure to detect spindle-shaped fibroblastoid cell progenitors in PBPC collections. Acta Haematol 1993;90:139–143

  72. Lazarus HM, Haynesworth SE, Gerson SL et al. Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother 1997;6:447–455.

  73. Wexler SA, Donaldson C, Denning-Kendall P et al. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003;121:368–374

  74. Reading L, Still K, Bishop N et al. Peripheral blood as an alternative source of mesenchymal stem cells. Bone 2000;26 (suppl):S9.

  75. Gronthos S, Graves SE, Simmons PJ. Isolation, purification and in vitro manipulation of human bone marrow stromal precursor cells. Marrow Stromal Cell Culture In: Beresford JN, Owen ME, eds. Cambridge, U.K: Cambridge University Press,1998;26–42.

  76. Friedenstein AJ, Latzinik NV, Gorskaya Y et al. Bone marrow stromal colony formation requires stimulation by haemopoietic cells. Bone Miner 1992;18:199–213

  77. Kuznetsov SA, Friedenstein AJ, Robey PG. Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol 1997;97:561–570.

  78. Verfaillie C, Hurley R, Bhatia R et al. Role of bone marrow matrix in normal and abnormal hematopoiesis. Crit Rev Oncol Hematol 1994;16:201–224.

  79. Fernandez M, Minguell JJ. Adhesive interactions in the hematopoietic system: regulation by cytokines. Proc Soc Exp Biol Med 1996;212:313–323.

  80. Gronthos S, Graves SE, Ohta S et al. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 1994;84:4164–4173.

  81. Gronthos S, Mankani M, Brahim J et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000;97:13625–13630.

  82. Loges S, Fehse B, Brockmann MA et al. Identification of the adult human hemangioblast. STEM CELLS Dev 2004;13:229–242.

  83. Huss R, Heil M, Moosmann S et al. Improved arteriogenesis with simultaneous skeletal muscle repair in ischemic tissue by SCL(+) multipotent adult progenitor cell clones from peripheral blood. J Vasc Res 2004;41:422–431.

  84. Gering M, Rodaway AR, Gottgens B et al. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J 1998;17:4029–4045.

  85. Pochampally RR, Smith JR, Ylostalo J et al. Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 2004;103:1647–1652.

  86. Jiang Y, Vaessen B, Lenvik T et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 2002;30:896–904

  87. Lange C, Kaltz C, Thalmeier K et al. Hematopoietic reconstitution of syngeneic mice with a peripheral blood-derived, monoclonal CD34-, Sca-1+, Thy-1(low), c-kit+ stem cell line. J Hematother Stem Cell Res 1999;8:335–342

  88. Bucala R, Spiegel LA, Chesney J et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994;1:71–81

  89. Chesney J, Bacher M, Bender A et al. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci U S A 1997;94:6307–6312

  90. Chesney J, Metz C, Stavitsky AB et al. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol 1998;160:419–425

  91. Abe R, Donnelly SC, Peng T et al. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 2001;166:7556–7562

  92. Quan TE, Cowper S, Wu SP et al. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 2004;36:598–606

  93. Eghbali-Fatourechi GZ, Lamsam J, Fraser D et al. Circulating osteoblast-lineage cells in humans. N Engl J Med 2005;352:1959–1966

  94. Kuwana M, Okazaki Y, Kodama H et al. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol 2003;74:833–845.

  95. Zhao Y, Glesne D, Huberman E. A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci U S A 2003;100:2426–2431

  96. Zvaifler NJ, Marinova-Mutafchieva L, Adams G et al. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2000;2:477–488

  97. Roufosse CA, Direkze NC, Otto WR et al. Circulating mesenchymal stem cells. Int J Biochem Cell Biol 2004;36:585–597.

  98. Pereira RF, Halford KW, O'Hara MD et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci U S A 1995;92:4857–4861

  99. Pereira RF, O'Hara MD, Laptev AV et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci U S A 1998;95:1142–1147

  100. Hou Z, Nguyen Q, Frenkel B et al. Osteoblast-specific gene expression after transplantation of marrow cells: implications for skeletal gene therapy. Proc Natl Acad Sci U S A 1999;96:7294–7299

  101. Gao J, Dennis JE, Muzic RF et al. The dynamic in vivo distribution of bone marrowderived mesenchymal stem cells after infusion. Cells Tissues Organs 2001;169:12–20

  102. Horwitz EM, Gordon PL, Koo WK et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002;99:8932–8937.

  103. Devine MJ, Mierisch CM, Jang E et al. Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 2002;20:1232–1239.

  104. Francois S, Bensidhoum M, Mouiseddine M et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. STEM CELLS 2006;24:1020–1029

  105. Wu GD, Bowdish ME, Jin YS et al. Contribution of mesenchymal progenitor cells to tissue repair in rat cardiac allografts undergoing chronic rejection. J Heart Lung Transplant 2005;24:2160–2169.

  106. Freyman T, Polin G, Osman H et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 2006;27:1114–1122.

  107. Shimer KS, Landis B, O'Rear L et al. Adult bone marrow derived mesenchymal stem cells (MSC) migration in response to a fracture regeneration cue. Available at: Accessed October 10, 2005.

  108. Oyama M, Tatlock A, Fukuta S et al. Retrovirally transduced bone marrow stromal cells isolated from a mouse model of human osteogenesis imperfecta (oim) persist in bone and retain the ability to form cartilage and bone after extended passaging. Gene Ther 1999;6:321–329.

  109. Shirley D, Marsh D, Jordan G et al. Systemic recruitment of osteoblastic cells in fracture healing. J Orthop Res 2005;23:1013–1021.

  110. Friedenstein AJ, Petrakova KV, Kurolesova AI et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968;6:230–247

  111. Friedenstein AJ, Ivanov-Smolenski AA, Chajlakjan RK et al. Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp Hematol 1978;6:440–444.

  112. Simmons PJ, Przepiorka D, Thomas ED et al. Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature 1987;328:429–432.

  113. Koc ON, Peters C, Aubourg P et al. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 1999;27:1675–1681.

  114. Stute N, Fehse B, Schroder J et al. Human mesenchymal stem cells are not of donor origin in patients with severe aplastic anemia who underwent sex-mismatched allogeneic bone marrow transplant. J Hematother Stem Cell Res 2002;11:977–984.

  115. Keating A, Singer JW, Killen PD et al. Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature 1982;298:280–283

  116. Piersma AH, Ploemacher RE, Brockbank KG. Transplantation of bone marrow fibroblastoid stromal cells in mice via the intravenous route. Br J Haematol 1983;54:285–290.

  117. Anklesaria P, Kase K, Glowacki J et al. Engraftment of a clonal bone marrow stromal cell line in vivo stimulates hematopoietic recovery from total body irradiation. Proc Natl Acad Sci U S A 1987;84:7681–7685.

  118. Krause DS, Theise ND, Collector MI et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 2001;105:369–377.

  119. Brazelton TR, Rossi FM, Keshet GI et al. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000;290:1775–1779

  120. Mezey E, Chandross KJ, Harta G et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000;290:1779–1782.

  121. Ferrari G, Cusella-De Angelis G, Coletta M et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998;279:1528–1530

  122. Gussoni E, Soneoka Y, Strickland CD et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999;401:390–394

  123. Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infracted myocardium. Nature 2001;410:701–705

  124. Theise ND, Badve S, Saxena R et al. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 2000;31:235–240.

  125. Lagasse E, Connors H, Al-Dhalimy M et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 2000;6:1229–1234.

  126. Theise ND, Nimmakayalu M, Gardner R et al. Liver from bone marrow in humans. Hepatology 2000;32:11–16.

  127. Suratt BT, Cool CD, Serls AE et al. Human pulmonary chimerism after hematopoietic stem cell transplantation. Am J Respir Crit Care Med 2003;168:318–322

  128. Okamoto R, Yajima T, Yamazaki M et al. Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract. Nat Med 2002;8:1011–1017.

  129. Korbling M, Katz RL, Khanna A et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 2002;346:738–746.

  130. Osawa M, Hanada K, Hamada H et al. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996;273:242–245.

  131. Bhatia M, Bonnet D, Murdoch B et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 1998;4:1038–1045.

  132. Zanjani ED, Almeida-Porada G, Livingston AG et al. Human bone marrow CD34-cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol 1998;26:353–360.

  133. Singer JW, Charbord P, Keating A et al. Simian virus 40-transformed adherent cells from human long-term marrow cultures: cloned cell lines produce cells with stromal and hematopoietic characteristics. Blood 1987;70:464–474.

  134. Singer JW, Keating A, Cuttner J et al. Evidence for a stem cell common to hematopoiesis and its in vitro microenvironment: studies of patients with clonal hematopoietic neoplasia. Leuk Res 1984;8:535–545

  135. Dominici M, Pritchard C, Garlits JE et al. Hematopoietic cells and osteoblasts are derived from a common marrow progenitor after bone marrow transplantation. Proc Natl Acad Sci U S A 2004;101:11761–11766

  136. Ratajczak MZ, Kucia M, Majka M et al. Heterogeneous populations of bone marrowstem cells–are we spotting on the same cells from the different angles? Folia Histochem Cytobiol 2004;42:139–146

  137. Huss R, Hong DS, McSweeney PA et al. Differentiation of canine bone marrow cells with hemopoietic characteristics from an adherent stromal cell precursor. Proc Natl Acad Sci U S A 1995;92:748–752.

  138. Huss R. New definition and methods for isolation of the earliest peripheral blood derived hematopoietic stem cells. Beitr Infusionsther Transfusionsmed 1997;34:128–132.

  139. Huss R, Gatsios P, Graeve L et al. Quiescence of CD34-negative haematopoietic stem cells is mediated by downregulation of Cyclin B and no stat activation. Cytokine 2000;12:1195–1204.

  140. Rogers JA, Berman JW. A tumor necrosis factor-responsive long-term-culture initiating cell is associated with the stromal layer of mouse long-term bone marrow cultures. Proc Natl Acad Sci U S A 1993;90:5777–5780.

  141. Huss R. Isolation of primary and immortalized CD34-hematopoietic and mesenchymal stem cells from various sources. STEM CELLS 2000;18:1–9.

  142. Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976;4:267–274.

  143. Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211–228

  144. Miura M, Gronthos S, Zhao M et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 2003;100:5807–5812

  145. Aust L, Devlin B, Foster SJ et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 2004;6:7–14.

  146. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000;109:235–242

  147. Campagnoli C, Roberts IA, Kumar S et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001;98:2396–2402.

  148. Campagnoli C, Bellantuono I, Kumar S et al. High transduction efficiency of circulating first trimester fetal mesenchymal stem cells: potential targets for in utero ex vivo gene therapy. BJOG 2002;109:952–954.

  149. Naruse K, Urabe K, Mukaida T et al. Spontaneous differentiation of mesenchymal stem cells obtained from fetal rat circulation. Bone 2004;35:850–858.

  150. Kim SW, Han H, Chae GT et al. Successful Stem Cell Therapy Using Umbilical Cord Blood-derived Multi-potent Stem Cells for Buerger's Disease and Ischemic Limb Disease Animal Model. STEM CELLS 2006;24:1620–1626

  151. Zuk PA, Zhu M, Ashjian P et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279–4295.

  152. Mareschi K, Biasin E, Piacibello W et al. Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 2001;86:1099–1100.

rating: 2.33 from 6 votes | updated on: 10 Feb 2009 | views: 11139 |

Rate article: