table of contents table of contents

These methods can be applied to particular neurons at specific developmental stages …

Home » Biology Articles » Methods & Techniques » Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system » References

- Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system

1.   Sulston JE, Horvitz HR: Post-embryonic cell lineages of the nematode, Caenorhabditis elegans.Dev Biol 1977, 56:110-156.       2.   Sulston JE, Schierenberg E, White JG, Thomson JN: The embryonic cell lineage of the nematode Caenorhabditis elegans.Dev Biol 1983, 100:64-119.       3.   Hillier LW, Coulson A, Murray JI, Bao Z, Sulston JE, Waterston RH: Genomics in C. elegans: so many genes, such a little worm.Genome Res 2005, 15:1651-1660.       4.   Consortium TCeS: Genome sequence of the nematode C. elegans: A platform for investigating biology.Science 1998, 282:2012-2018.       5.   Fox RM, Von Stetina SE, Barlow SJ, Shaffer C, Olszewski KL, Moore JH, Dupuy D, Vidal M, Miller DM 3rd: A gene expression fingerprint of C. elegans embryonic motor neurons.BMC Genomics 2005, 6:42.       6.   Blacque OE, Perens EA, Boroevich KA, Inglis PN, Li C, Warner A, Khattra J, Holt RA, Ou G, Mah AK, et al.: Functional genomics of the cilium, a sensory organelle.Curr Biol 2005, 15:935-941.       7.   Cinar H, Keles S, Jin Y: Expression profiling of GABAergic motor neurons in Caenorhabditis elegans.Curr Biol 2005, 15:340-346.       8.   Colosimo ME, Brown A, Mukhopadhyay S, Gabel C, Lanjuin AE, Samuel AD, Sengupta P: Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types.Curr Biol 2004, 14:2245-2251.       9.   Zhang Y, Ma C, Delohery T, Nasipak B, Foat BC, Bounoutas A, Bussemaker HJ, Kim SK, Chalfie M: Identification of genes expressed in C. elegans touch receptor neurons.Nature 2002, 418:331-335.       10.   McKay SJ, Johnsen R, Khattra J, Asano J, Baillie DL, Chan S, Dube N, Fang L, Goszczynski B, Ha E, et al.: Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans.Cold Spring Harb Symp Quant Biol 2003, 68:159-169.       11.   Roy PJ, Stuart JM, Lund J, Kim SK: Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans.Nature 2002, 418:975-979.       12.   Christensen M, Estevez A, Yin X, Fox R, Morrison R, McDonnell M, Gleason C, Miller DM 3rd, Strange K: A primary culture system for functional analysis of C. elegans neurons and muscle cells.Neuron 2002, 33:503-514.       13.   Pauli F, Liu Y, Kim YA, Chen PJ, Kim SK: Chromosomal clustering and GATA transcriptional regulation of intestine-expressed genes in C. elegans.Development 2006, 133:287-295.         14.   Kunitomo H, Uesugi H, Kohara Y, Iino Y: Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails.Genome Biol 2005, 6:R17.       15.   Worm Base[]       16.   Touroutine D, Fox RM, Von Stetina SE, Burdina A, Miller DM 3rd, Richmond JE: acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction.J Biol Chem 2005, 280:27013-27021.       17.   Francis MM, Evans SP, Jensen M, Madsen DM, Mancuso J, Norman KR, Maricq AV: The Ror receptor tyrosine kinase CAM-1 is required for ACR-16-mediated synaptic transmission at the C. elegans neuromuscular junction.Neuron 2005, 46:581-594.       18.   Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL: Control of C. elegans larval development by neuronal expression of a TGF-beta homolog.Science 1996, 274:1389-1391.       19.   Inada H, Ito H, Satterlee J, Sengupta P, Matsumoto K, Mori I: Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans.Genetics 2006, 172:2239-2252.       20.   Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, et al.: The COG database: an updated version includes eukaryotes.BMC Bioinformatics 2003, 4:41.       21.   Nonet ML, Grundahl K, Meyer BJ, Rand JB: Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin.Cell 1993, 73:1291-1305.       22.   Nakayama T, Yaoi T, Yasui M, Kuwajima G: N-copine: a novel two C2-domain-containing protein with neuronal activity-regulated expression.FEBS Lett 1998, 428:80-84.       23.   Matthies DS, Fleming PA, Wilkes DM, Blakely RD: The Caenorhabditis elegans choline transporter CHO-1 sustains acetylcholine synthesis and motor function in an activity-dependent manner.J Neurosci 2006, 26:6200-6212.       24.   Rand JB, Duerr JS, Frisby DL: Neurogenetics of vesicular transporters in C. elegans.Faseb J 2000, 14:2414-2422.       25.   Jiang G, Zhuang L, Miyauchi S, Miyake K, Fei YJ, Ganapathy V: A Na+/Cl- coupled GABA transporter, GAT-1, from Caenorhabditis elegans: structural and functional features, specific expression in GABA-ergic neurons, and involvement in muscle function.J Biol Chem 2005, 280:2065-2077.       26.   Mullen GP, Mathews EA, Saxena P, Fields SD, McManus JR, Moulder G, Barstead RJ, Quick MW, Rand JB: The Caenorhabditis elegans snf-11 gene encodes a sodium-dependent GABA transporter required for clearance of synaptic GABA.Mol Biol Cell 2006, 17:3021-3030.       27.   Jayanthi LD, Apparsundaram S, Malone MD, Ward E, Miller DM, Eppler M, Blakely RD: The Caenorhabditis elegans gene T23G5.5 encodes an antidepressant- and cocaine-sensitive dopamine transporter.Mol Pharmacol 1998, 54:601-609.       28.   Finney M, Ruvkun G: The unc-86 gene product couples cell lineage and cell identity in C. elegans.Cell 1990, 63:895-905.       29.   Sze JY, Ruvkun G: Activity of the Caenorhabditis elegans UNC-86 POU transcription factor modulates olfactory sensitivity.Proc Natl Acad Sci USA 2003, 100:9560-9565.       30.   Sze JY, Zhang S, Li J, Ruvkun G: The C. elegans POU-domain transcription factor UNC-86 regulates the tph-1 tryptophan hydroxylase gene and neurite outgrowth in specific serotonergic neurons.Development 2002, 129:3901-3911.       31.   Chalfie M, Au M: Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons.Science 1989, 243:1027-1033.       32.   Way JC, Chalfie M: mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans.Cell 1988, 54:5-16.       33.   Duggan A, Ma C, Chalfie M: Regulation of touch receptor differentiation by the Caenorhabditis elegans mec-3 and unc-86 genes.Development 1998, 125:4107-4119.       34.   Miller DM 3rd, Niemeyer CJ, Chitkara P: Dominant unc-37 mutations suppress the movement defect of a homeodomain mutation in unc-4, a neural specificity gene in Caenorhabditis elegans.Genetics 1993, 135:741-753.       35.   Miller DM 3rd, Niemeyer CJ: Expression of the unc-4 homeoprotein in Caenorhabditis elegans motor neurons specifies presynaptic input.Development 1995, 121:2877-2886.       36.   Winnier AR, Meir JY, Ross JM, Tavernarakis N, Driscoll M, Ishihara T, Katsura I, Miller DM 3rd: UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans.Genes Dev 1999, 13:2774-2786.       37.   Von Stetina SE, Fox RM, Watkins KL, Starich TA, Shaw JE, Miller DM 3rd: UNC-4 represses CEH-12/HB9 to specify synaptic inputs to VA motor neurons in C. elegans.Genes Dev 2007, 21:332-346.         38.   Much JW, Slade DJ, Klampert K, Garriga G, Wightman B: The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression.Development 2000, 127:703-712.       39.   Li C: The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans.Parasitology 2005, 131(Suppl):S109-127.       40.   Rogers CM, Franks CJ, Walker RJ, Burke JF, Holden-Dye L: Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides.J Neurobiol 2001, 49:235-244.         41.   Nelson LS, Rosoff ML, Li C: Disruption of a neuropeptide gene, flp-1, causes multiple behavioral defects in Caenorhabditis elegans.Science 1998, 281:1686-1690.       42.   Rogers C, Reale V, Kim K, Chatwin H, Li C, Evans P, de Bono M: Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1.Nat Neurosci 2003, 6:1178-1185.       43.   Kim K, Li C: Expression and regulation of an FMRFamide-related neuropeptide gene family in Caenorhabditis elegans.J Comp Neurol 2004, 475:540-550.       44.   Jacob TC, Kaplan JM: The EGL-21 carboxypeptidase E facilitates acetylcholine release at Caenorhabditis elegans neuromuscular junctions.J Neurosci 2003, 23:2122-2130.       45.   Keating CD, Kriek N, Daniels M, Ashcroft NR, Hopper NA, Siney EJ, Holden-Dye L, Burke JF: Whole-genome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi.Curr Biol 2003, 13:1715-1720.       46.   Mertens I, Meeusen T, Janssen T, Nachman R, Schoofs L: Molecular characterization of two G protein-coupled receptor splice variants as FLP2 receptors in Caenorhabditis elegans.Biochem Biophys Res Commun 2005, 330:967-974.       47.   Altun-Gultekin Z, Andachi Y, Tsalik EL, Pilgrim D, Kohara Y, Hobert O: A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans.Development 2001, 128:1951-1969.       48.   Ruvinsky I, Ohler U, Burge CB, Ruvkun G: Detection of broadly expressed neuronal genes in C. elegans.Dev Biol 2007, 302:617-626.       49.   Ailion M, Thomas JH: Isolation and characterization of high-temperature-induced Dauer formation mutants in Caenorhabditis elegans.Genetics 2003, 165:127-144.       50.   Beckstead RB, Thummel CS: Indicted: worms caught using steroids.Cell 2006, 124:1137-1140.       51.   Li W, Kennedy SG, Ruvkun G: daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway.Genes Dev 2003, 17:844-858.       52.   Murakami M, Koga M, Ohshima Y: DAF-7/TGF-beta expression required for the normal larval development in C. elegans is controlled by a presumed guanylyl cyclase DAF-11.Mech Dev 2001, 109:27-35.       53.   Riddle DL, Albert PS: Genetic and environmental regulation of dauer larva development.In C. elegans II. Edited by: Riddle DL, Blumenthal T, Meyer BJ, Priess JR. Plainview, NY: Cold Spring Harbor Laboratory Press; 1997:739-768.       54.   Swoboda P, Adler HT, Thomas JH: The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans.Mol Cell 2000, 5:411-421.       55.   Hallam S, Singer E, Waring D, Jin Y: The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification.Development 2000, 127:4239-4252.       56.   Esmaeili B, Ross JM, Neades C, Miller DM 3rd, Ahringer J: The C. elegans even-skipped homologue, vab-7, specifies DB motoneurone identity and axon trajectory.Development 2002, 129:853-862.       57.   Von Stetina SE, Treinin M, Miller DM 3rd: The motor circuit.Int Rev Neurobiol 2006, 69:125-167       58.   Ahringer J: Posterior patterning by the Caenorhabditis elegans even-skipped homolog vab-7.Genes Dev 1996, 10:1120-1130.         59.   Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, et al.: Genome-wide atlas of gene expression in the adult mouse brain.Nature 2007, 445:168-176.       60.   Katsanis N, Lupski JR, Beales PL: Exploring the molecular basis of Bardet-Biedl syndrome.Hum Mol Genet 2001, 10:2293-2299.       61.   Stoetzel C, Muller J, Laurier V, Davis EE, Zaghloul NA, Vicaire S, Jacquelin C, Plewniak F, Leitch CC, Sarda P, et al.: Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome.Am J Hum Genet 2007, 80:1-11.       62.   Cole DG: Intraflagellar transport: keeping the motors coordinated.Curr Biol 2005, 15:R798-801.       63.   Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC, Kim JC, Ross AJ, Eichers ER, Teslovich TM, et al.: Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome.Nature 2003, 425:628-633.       64.   Kim JC, Ou YY, Badano JL, Esmail MA, Leitch CC, Fiedrich E, Beales PL, Archibald JM, Katsanis N, Rattner JB, et al.: MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis.J Cell Sci 2005, 118:1007-1020       65.   Li JB, Gerdes JM, Haycraft CJ, Fan Y, Teslovich TM, May-Simera H, Li H, Blacque OE, Li L, Leitch CC, et al.: Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene.Cell 2004, 117:541-552.       66.   Ross AJ, May-Simera H, Eichers ER, Kai M, Hill J, Jagger DJ, Leitch CC, Chapple JP, Munro PM, Fisher S, et al.: Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates.Nat Genet 2005, 37:1135-1140.       67.   Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, et al.: A map of the interactome network of the metazoan C. elegans.Science 2004, 303:540-543.       68.   Sakamoto R, Byrd DT, Brown HM, Hisamoto N, Matsumoto K, Jin Y: The C. elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization.Mol Biol Cell 2005, 16:483-496.       69.   Byrd DT, Kawasaki M, Walcoff M, Hisamoto N, Matsumoto K, Jin Y: UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans.Neuron 2001, 32:787-800.       70.   Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm AD, Jin Y: Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development.Cell 2005, 120:407-420.       71.   Patrick GN: Synapse formation and plasticity: recent insights from the perspective of the ubiquitin proteasome system.Curr Opin Neurobiol 2006, 16:90-94.       72.   Gunsalus KC, Ge H, Schetter AJ, Goldberg DS, Han JD, Hao T, Berriz GF, Bertin N, Huang J, Chuang LS, et al.: Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis.Nature 2005, 436:861-865.       73.   Nass R, Hall DH, Miller DM 3rd, Blakely RD: Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans.Proc Natl Acad Sci USA 2002, 26:3264-3269.       74.   Chang S, Johnston RJ Jr, Hobert O: A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans.Genes Dev 2003, 17:2123-2137.       75.   Lickteig KM, Duerr JS, Frisby DL, Hall DH, Rand JB, Miller DM 3rd: Regulation of neurotransmitter vesicles by the homeodomain protein UNC-4 and its transcriptional corepressor UNC-37/groucho in Caenorhabditis elegans cholinergic motor neurons.J Neurosci 2001, 21:2001-2014.       76.   Prasad BC, Ye B, Zackhary R, Schrader K, Seydoux G, Reed RR: unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors.Development 1998, 125:1561-1568.       77.   Goodman MB, Schwarz EM: Transducing touch in Caenorhabditis elegans.Annu Rev Physiol 2003, 65:429-452.       78.   Ackley BD, Kang SH, Crew JR, Suh C, Jin Y, Kramer JM: The basement membrane components nidogen and type XVIII collagen regulate organization of neuromuscular junctions in Caenorhabditis elegans.J Neurosci 2003, 23:3577-3587.       79.   White JG, Southgate E, Thomson JN, Brenner S: The structure of the nervous system of the nematode Caenorhabditis elegans.Phil Trans Roy Soc London 1986, 314:1-340.       80.   Wadsworth WG, Bhatt H, Hedgecock EM: Neuroglia and pioneer axons express UNC-6 to provide global and local netrin cues for guiding migrations in Caenorhabditis elegans.Neuron 1995, 16:35-46.       81.   Reynolds NK, Schade MA, Miller KG: Convergent, RIC-8-dependent Galpha signaling pathways in the C. elegans synaptic signaling network.Genetics 2005, 169:651-670.       82.   Putrenko I, Zakikhani M, Dent JA: A family of acetylcholine-gated chloride channel subunits in Caenorhabditis elegans.J Biol Chem 2005, 280:6392-6398.       83.   Shen K, Bargmann CI: The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans.Cell 2003, 112:619-630.         84.   Ranscht B: Sequence of contactin, a 130-kD glycoprotein concentrated in areas of interneuronal contact, defines a new member of the immunoglobulin supergene family in the nervous system.J Cell Biol 1988, 107:1561-1573.       85.   Boyle ME, Berglund EO, Murai KK, Weber L, Peles E, Ranscht B: Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve.Neuron 2001, 30:385-397.       86.   Vogt L, Schrimpf SP, Meskenaite V, Frischknecht R, Kinter J, Leone DP, Ziegler U, Sonderegger P: Calsyntenin-1, a proteolytically processed postsynaptic membrane protein with a cytoplasmic calcium-binding domain.Mol Cell Neurosci 2001, 17:151-166.       87.   Starich T, Sheehan M, Jadrich J, Shaw J: Innexins in C. elegans.Cell Commun Adhes 2001, 8:311-314.       88.   Latchman DS: POU family transcription factors in the nervous system.J Cell Physiol 1999, 179:126-133.       89.   Nepveu A: Role of the multifunctional CDP/Cut/Cux homeodomain transcription factor in regulating differentiation, cell growth and development.Gene 2001, 270:1-15.       90.   Chang C, Yu TW, Bargmann CI, Tessier-Lavigne M: Inhibition of netrin-mediated axon attraction by a receptor protein tyrosine phosphatase.Science 2004, 305:103-106.       91.   Hedgecock EM, Culotti JG, Hall DH: The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans.Neuron 1990, 4:61-85.       92.   Maloof JN, Whangbo J, Harris JM, Jongeward GD, Kenyon C: A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans.Development 1999, 126:37-49.       93.   Whangbo J, Kenyon C: A Wnt signaling system that specifies two patterns of cell migration in C. elegans.Mol Cell 1999, 4:851-858.       94.   Zinovyeva AY, Forrester WC: The C. elegans Frizzled CFZ-2 is required for cell migration and interacts with multiple Wnt signaling pathways.Dev Biol 2005, 285:447-461.       95.   Kim SK, Lund J, Kiraly M, Duke K, Jiang M, Stuart JM, Eizinger A, Wylie BN, Davidson GS: A gene expression map for Caenorhabditis elegans.Science 2001, 293:2087-2092.       96.   Li C, Nelson LS, Kim K, Nathoo A, Hart AC: Neuropeptide gene families in the nematode Caenorhabditis elegans.Ann N Y Acad Sci 1999, 897:239-252.       97.   Yang Z, Edenberg HJ, Davis RL: Isolation of mRNA from specific tissues of Drosophila by mRNA tagging.Nucleic Acids Res 2005, 33:e148.       98.   White JG, Albertson DG, Anness MAR: Connectivity changes in a class of motoneurone during the development of a nematode.Nature 1978, 271:764-766.       99.   Miller DM, Shen MM, Shamu CE, Burglin TR, Ruvkun G, Dubois ML, Ghee M, Wilson L: C. elegans unc-4 gene encodes a homeodomain protein that determines the pattern of synaptic input to specific motor neurons.Nature 1992, 355:841-845.       100.   WormBook: Specification of the Nervous System[]       101.   Varadan V, Miller DM 3rd, Anastassiou D: Computational inference of the molecular logic for synaptic connectivity in C. elegans.Bioinformatics 2006, 22:e497-506.       102.   Kaufman A, Dror G, Meilijson I, Ruppin E: Gene expression of Caenorhabditis elegans neurons carries information on their synaptic connectivity.PLoS Comput Biol 2006, 2:e167.       103.   Manak JR, Dike S, Sementchenko V, Kapranov P, Biemar F, Long J, Cheng J, Bell I, Ghosh S, Piccolboni A, et al.: Biological function of unannotated transcription during the early development of Drosophila melanogaster.Nat Genet 2006, 38:1151-1158.       104.   Brenner S: The genetics of Caenorhabditis elegans.Genetics 1974, 77:71-94       105.   WormBook: Maintenance of C. elegans[]       106.   Mello C, Fire A: DNA transformation.Methods Cell Biol 1995, 48:451-482.       107.   WormBook: Transformation and Microinjection[]       108.   Dupuy D, Li QR, Deplancke B, Boxem M, Hao T, Lamesch P, Sequerra R, Bosak S, Doucette-Stamm L, Hope IA, et al.: A first version of the Caenorhabditis elegans Promoterome.Genome Res 2004, 14:2169-2175.       109.   Schachat F, Garcea RL, Epstein HF: Myosins exist as homodimers of heavy chains: demonstration with specific antibody purified by nematode mutant myosin affinity chromatography.Cell 1978, 15:405-411.       110.   WormBook: Methods in Cell Biology[]       111.   Affymetrix Website[]       112.   Barrett T, Edgar R: Mining microarray data at NCBI's Gene Expression Omnibus (GEO).Methods Mol Biol 2006, 338:175-190.       113.   Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.Nucleic Acids Res 2002, 30:207-210.       114.   NCBI GEO[]       115.   Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data.Nucleic Acids Res 2003, 31:e15.       116.   Hypergeometric Calculator[]       117.   Ensembl[]       118.   Allen Brain Atlas[]       119.   Vidal Interactome[]       120.   Worm Atlas[]       121.   Salkoff L, Butler A, Fawcett G, Kunkel M, McArdle C, Paz-y-Mino G, Nonet M, Walton N, Wang ZW, Yuan A, et al.: Evolution tunes the excitability of individual neurons.Neuroscience 2001, 103:853-859.       122.   Sym M, Robinson N, Kenyon C: MIG-13 positions migrating cells along the anteroposterior body axis of C. elegans.Cell 1999, 98:25-36.       123.   Nathoo AN, Moeller RA, Westlund BA, Hart AC: Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species.Proc Natl Acad Sci USA 2001, 98:14000-14005.    

rating: 1.89 from 9 votes | updated on: 8 Sep 2007 | views: 17815 |

Rate article: