Login

Join for Free!
113911 members
table of contents table of contents

Biology Articles » Biophysics » Medical Biophysics » The New Unified Theory of ATP Synthesis/Hydrolysis and Muscle Contraction, Its Manifold Fundamental Consequences and Mechanistic Implications and Its Applications in Health and Disease » References

References
- The New Unified Theory of ATP Synthesis/Hydrolysis and Muscle Contraction, Its Manifold Fundamental Consequences and Mechanistic Implications and Its Applications in Health and Disease

1. Nath, S. The Molecular Mechanism of ATP synthesis by F1F0-ATP Synthase: A Scrutiny of the Major Possibilities. Adv. Biochem. Eng. Biotechnol. 2002, 74, 65-98.

2. Nath, S. Molecular Mechanisms of Energy Transduction in Cells: Engineering Applications and Biological Implications. Adv. Biochem. Eng. Biotechnol. 2003, 85, 125-180.

3. Senior, A.E.; Nadanaciva, S.; Weber, J. The Molecular Mechanism of ATP synthesis by F1F0- ATP Synthase. Biochim. Biophys. Acta 2002, 1553, 188-211.

4. Huxley, A.F. Cross-bridge Action: Present Views, Prospects, and Unknowns. J. Biomech. 2000, 33, 1189-1195.

5. Geeves, M.A.; Holmes, K.C. The Molecular Mechanism of Muscle Contraction. Adv. Protein Chem. 2005, 71, 161-193.

6. Mitchell, P. Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation. Biol. Rev. 1966, 41, 445-502.

7. Boyer, P.D. The Binding Change Mechanism for ATP Synthase – Some Probabilities and Possibilities. Biochim. Biophys. Acta 1993, 1140, 215-250.

8. Huxley, H.E. The Mechanism of Muscular Contraction. Science 1969, 164, 1356-1366.

9. Huxley, A.F. Muscular Contraction. J. Physiol. 1974, 243, 1-43.

10. Nath, S. A Novel Systems Biology/Engineering Approach Solves Fundamental Molecular Mechanistic Problems in Bioenergetics and Motility. Process Biochem. 2006, 41, 2218-2235.

11. Nath, S. The Torsional Mechanism of Energy Transduction and ATP Synthesis as a Breakthrough in our Understanding of the Mechanistic, Kinetic and Thermodynamic Details. Thermochim. Acta 2004, 422, 5-17.

12. Nath, S.; Jain, S. The Detailed Molecular Mechanism of ATP Synthesis in the F0 Portion of ATP Synthase Reveals a Non-Chemiosmotic Mode of Energy Coupling. Thermochim. Acta 2002, 394, 89-98.

13. Jain, S.; Nath, S. Catalysis by ATP Synthase: Mechanistic, Kinetic and Thermodynamic Characteristics. Thermochim. Acta 2001, 378, 35-44.

14. Nath, S.; Khurana, D. The Molecular Mechanism of the Contractile Cycle of Muscle. Curr. Sci. 2001, 81, 78-82.

15. Jain, S.; Nath, S. Kinetic Model of ATP Synthase: pH Dependence of the Rate of ATP Synthesis. FEBS Lett. 2000, 476, 113-117.

16. Nath, S.; Jain, S. Kinetic Modeling of ATP Synthesis by ATP Synthase and Its Mechanistic Implications. Biochem. Biophys. Res. Commun. 2000, 272, 629-633.

17. Nath, S.; Rohatgi, H.; Saha, A. The Catalytic Cycle of ATP Synthesis by Means of a Torsional Mechanism. Curr. Sci. 2000, 78, 23-27.

18. Nath, S.; Rohatgi, H.; Saha, A. The Torsional Mechanism of Energy Transfer in ATP Synthase. Curr. Sci. 1999, 77, 167-169. Int.

19. Rohatgi, H.; Saha, A.; Nath, S. Mechanism of ATP Synthesis by Protonmotive Force. Curr. Sci. 1998, 75, 716-718.

20. Nath, S. A Thermodynamic Principle for the Coupled Bioenergetic Processes of ATP Synthesis. Pure Appl. Chem. 1998, 70, 639-644.

21. Nath, S. The Torsional Mechanism of Energy Transduction and ATP Synthesis: An Alternative to the Binding Change Mechanism. Biophys. J. 2002, 82, 291a.

22. Nath, S. A New Paradigm for Ion Translocation and Energy Transduction in Biological Systems. Biophys. J. 2005, 88, 548a.

23. Nath, S. Beyond the Chemiosmotic Theory: The Torsional Mechanism of Energy Transduction and ATP Synthesis as a New Paradigm in Bioenergetics. Biophys. J. 2006, 90, 131a.

24. Nath, S. A Thermodynamic Principle for the Coupled Nonequilibrium Processes of ATP Synthesis. In Proceedings of the ISBC X: International Society for Biological Calorimetry, Monte Verita, Switzerland, 1997; pp. i9.

25. Nath, S. A Fundamental Thermodynamic Principle for Coupling in Oxidative Phosphorylation. In Proceedings of the Sixteenth International Congress of Biochemistry and Molecular Biology, New Delhi, 1994; Vol. II, pp. 390.

26. Nath, S. A Novel Molecular Mechanism of Energy Transduction in Muscle Contraction. In The Gordon Research Conference Muscle: Contractile Proteins, New London, New Hampshire, USA, 2005.

27. Nath, S. The Rotation-Twist-Tilt Energy Storage Mechanism of Muscle Contraction. In The Gordon Research Conference Muscle: Contractile Proteins, New London, New Hampshire, USA, 2005.

28. Nath, S. Achievements, Ramifications and Implications of Nath’s Torsional Mechanism of Energy Transduction and ATP Synthesis and the Rotation-Uncoiling-Tilt (RUT) Energy Storage Mechanism of Muscle Contraction. In The National Conference on Thermodynamics of Chemical and Biological Systems, The Indian Thermodynamics Society, Amritsar, 2005; pp. PL-4−PL-5.

29. Jain, S.; Murugavel, R.; Hansen, L.D. ATP Synthase and the Torsional Mechanism: Resolving a 50-Year-Old Mystery. Curr. Sci. 2004, 87, 16-19.

30. Adachi, K.; Oiwa, K.; Nishizaka, T.; Furuike, S.; Noji, H.; Itoh, H.; Yoshida, M.; Kinosita, K. Coupling of Rotation and Catalysis in F1-ATPase Revealed by Single-Molecule Imaging and Manipulation. Cell 2007, 130, 309-321.

31. Weber, J.; Senior, A.E. Catalytic Mechanism of F1-ATPase. Biochim. Biophys. Acta 1997, 1319, 19-58.

32. Weber, J.; Senior, A.E. Bi-site Catalysis in F1-ATPase: Does it Exist? J. Biol. Chem. 2001, 276, 35422-35428.

33. Menz, R.I.; Walker, J.E.; Leslie, A.G.W. Structure of Bovine Mitochondrial F1-ATPase with Nucleotide Bound to All Three Catalytic Sites: Implications for the Mechanism of Rotary Catalysis. Cell 2001, 106, 331-341.

34. Ross, J. Energy Transfer from Adenosine Triphosphate. J. Phys. Chem. B 2006, 110, 6987-6990.

35. Senior, A.E. ATP Synthase: Motoring to the Finish Line. Cell 2007, 130, 220-221.

36. Dittrich, M.; Hayashi, S.; Schulten, K. On the Mechanism of ATP Hydrolysis in F1-ATPase. Biophys. J. 2003, 85, 2253-2266.

37. Gao, Y.Q.; Yang, W.; Karplus, M. A Structure-Based Model for the Synthesis and Hydrolysis of ATP by F1-ATPase. Cell 2005, 123, 195-205.

38. Al-Shawi, M.K.; Ketchum, C.J.; Nakamoto, R.K. The Escherichia coli FOF1 γM23K Uncoupling Mutant has a Higher K0.5 for Pi. Transition State Analysis of this Mutant and Others Reveals that Synthesis and Hydrolysis Utilize the Same Kinetic Pathway. Biochemistry 1997, 36, 12961- 12969.

39. Boyer, P.D. Catalytic Site Forms and Controls in ATP Synthase Catalysis. Biochim. Biophys. Acta 2000, 1458, 252-262.

40. Abrahams, J.P.; Leslie, A.G.W.; Lutter, R.; Walker, J.E. Structure at 2.8 Å Resolution of F1- ATPase from Bovine Heart Mitochondria. Nature 1994, 370, 621-628.

41. Berden, J.A.; Hartog, A.F. Analysis of the Nucleotide Binding Sites of Mitochondrial ATP Synthase Provides Evidence for a Two-Site Catalytic Mechanism. Biochim. Biophys. Acta 2000, 1458, 234-251.

42. Berden, J.A. Rotary Movements within the ATP Synthase Do Not Constitute an Obligatory Element of the Catalytic Mechanism. IUBMB Life 2003, 55, 473-481.

43. Penefsky, H.S.; Cross, R.L. Structure and Mechanism of FOF1-type ATP synthases and ATPases. Adv. Enzymol. 1991, 64, 173-214.

44. Sugi, H.; Kobayashi, T.; Gross, T.; Noguchi, K.; Karr, T.; Harrington, W.F. Contraction Characteristics and ATPase Activity of Skeletal Muscle Fibers in the Presence of Antibody to Myosin Subfragment 2. Proc. Natl. Acad. Sci. USA 1992, 89, 6134-6137.

45. Ishijima, A.; Kojima, H.; Funatsu, T.; Tokunaga, M.; Higuchi, H.; Tanaka, H.; Yanagida, T. Simultaneous Observation of Individual ATPase and Mechanical Events by a Single Myosin Molecule During Interaction with Actin. Cell 1998, 92, 161-171.

46. Stock, D.; Leslie, A.G.W.; Walker, J.E. Molecular Architecture of the Rotary Motor in ATP Synthase. Science 1999, 286, 1700-1705.

47. Hinkle, P.C.; Arun Kumar, M.; Resetar, A.; Harris, D.L. Mechanistic Stoichiometry of Mitochondrial Oxidative Phosphorylation. Biochemistry 1991, 30, 3576-3582.

48. Chen, C.; Ko, Y.; Delannoy, M.; Ludtke, S.J.; Chiu, W.; Pedersen, P.L. Mitochondrial ATP Synthasome: Three-Dimensional Structure by Electron Microscopy of the ATP Synthase in Complex Formation with Carriers for Pi and ADP/ATP. J. Biol. Chem. 2004, 279, 31761-31768.

49. Prebble, J. Peter Mitchell and the Ox Phos Wars. Trends Biochem. Sci. 2002, 27, 209-212.

50. Slater, E.C. The Mechanism of the Conservation of Energy of Biological Oxidations. Eur. J. Biochem. 1987, 166, 489-504.

51. Reynafarje, B.; Alexandre, A.; Davies, P; Lehninger, A.L. Proton Translocation Stoichiometry of Cytochrome Oxidase: Use of a Fast-Responding Oxygen Electrode. Proc. Natl. Acad. Sci. USA 1982, 79, 7218-7222.

52. Williams, R.J.P. Some Unrealistic Assumptions in the Theory of Chemi-Osmosis and their Consequences. FEBS Lett. 1979, 102, 126-132.

53. Green, D.E. A Critique of the Chemiosmotic Model of Energy Coupling. Proc. Natl. Acad. Sci. USA 1981, 78, 2240-2243.

54. Battley, E.H. Energetics of Microbial Growth; Wiley: New York, 1987.

55. Hansen, L.D.; Hopkin, M.S.; Criddle, R.S. Plant Calorimetry: A Window to Plant Physiology and Ecology. Thermochim. Acta 1997, 300, 183-197.

56. Nielsen, J.; Villadsen, J.; Liden, G. Bioreaction Engineering Principles, 2ed Ed.; Kluwer Academic/Plenum: New York, 2003.

57. Lemasters, J.J. The ATP-to-Oxygen Stoichiometries of Oxidative Phosphorylation by Rat Liver Mitochondria: An Analysis of ADP-Induced Oxygen Jumps by Linear Nonequilibrium Thermodynamics. J. Biol. Chem. 1984, 259, 13123-13130.

58. Steinberg-Yfrach, G.; Rigaud, J.-L.; Durantini, E.N.; Moore, A.L.; Gust, D.; Moore, T.A. Light- Driven Production of ATP Catalysed by F0F1-ATP Synthase in an Artificial Photosynthetic Membrane. Nature 1998, 392, 479-482.

59. Tedeschi, H. Old and New Data, New Issues: The Mitochondrial Δψ. Biochim. Biophys. Acta 2005, 1709, 195-202.

60. Tedeschi, H. Commentary on: Old and New Data, New Issues: The Mitochondrial Δψ. Biochim. Biophys. Acta 2005, 1710, 63-65.

61. Miki, H.; Setou, M.; Kaneshiro, K.; Hirokawa, N. All Kinesin Superfamily Protein, KIF, Genes in Mouse and Human. Proc. Natl. Acad. Sci. USA 2001, 98, 7004-7011.

62. Howard, J. The Movement of Kinesin Along Microtubules. Annu. Rev. Physiol. 1996, 58, 703-729.

63. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton; Sinauer: Sunderland, MA, USA, 2001.

64. Hua, W.; Chung, J.; Gelles, J. Distinguishing Inchworm and Hand-Over-Hand Processive Kinesin Movement Models by Neck Rotation Measurements. Science 2002, 295, 844-848.

65. Asbury, C.L.; Fehr, A.N.; Block, S.M. Kinesin Moves by an Asymmetric Hand-Over-Hand Mechanism. Science 2003, 302, 2130-2134.

66. Thoresen, T; Gelles, J. Processive Movement by a Mutant Kinesin Heterodimer with Only One Active Head. Biophys. J. 2004, 86, 409a.

67. Walker, R.A. ncd and Kinesin Motor Domains Interact with Both α- and β-Tubulin. Proc. Natl. Acad. Sci. USA 1995, 92, 5960-5964.

68. Larcher, J.-C.; Boucher, D.; Lazereg, S.; Gros, F.; Denoulet, P. Interaction of Kinesin Motor Domains with α- and β-Tubulin Subunits at a Tau-Independent Binding Site. J. Biol. Chem. 1996, 271, 22117-22124.

69. Tucker, C.; Goldstein, L.S.B. Probing the Kinesin-Microtubule Interaction. J. Biol. Chem. 1997, 272, 9481-9488.

70. Han, Y.; Sablin, E.P.; Nogales, E.; Fletterick, R.J.; Downing, K.H. Visualizing a New Binding Site of ncd-Motor Domain on Tubulin. J. Struct. Biol. 1999, 128, 26-33.

71. Yildiz, A.; Tomishige, M.; Vale, R.D.; Selvin, P.R. Kinesin Walks Hand-Over-Hand. Science 2004, 303, 676-678.

72. Carter, N.J.; Cross, R.A. Mechanics of the Kinesin Step. Nature 2005, 435, 308-312.

73. Carter, N.J.; Cross, R.A. Kinesin’s Moonwalk. Curr. Opin. Cell Biol. 2006, 18, 61-67.

74. Huang, T.-G.; Hackney, D.D. Drosophila Kinesin Minimal Motor Domain Expressed in Escherichia coli: Purification and Kinetic Characterization. J. Biol. Chem. 1994, 269, 16493-16501.

75. Huang, T.-G.; Suhan, J.; Hackney, D.D. Drosophila Kinesin Minimal Motor Domain Extending to Amino Acid Position 392 is Dimeric When Expressed in Escherichia coli. J. Biol. Chem. 1994, 269, 16502-16507.

76. Yildiz, A.; Selvin, P.R. Kinesin: Walking, Crawling or Sliding Along? Trends Cell Biol. 2006, 15, 112-120.

77. Guydosh, N.R.; Block, S.M. Backsteps Induced by Nucleotide Analogs Suggest the Front Head of Kinesin is Gated by Strain. Proc. Natl. Acad. Sci. USA 2006, 103, 8054-8059.

78. Visscher, K.; Schnitzer, M.J.; Block, S.M. Single Kinesin Molecules Studied with a Molecular Force Clamp. Nature 1999, 400, 184-189.

79. Nishiyama, M.; Higuchi, H.; Yanagida, T. Chemomechanical Coupling of the Forward and Backward Steps of Single Kinesin Molecules. Nature Cell Biol. 2002, 4, 790-797.

80. Kawaguchi, K.; Ishiwata, S. Temperature Dependence of Force, Velocity, and Processivity of Single Kinesin Molecules. Biochem. Biophys. Res. Commun. 2000, 272, 895-899.

81. Belzacq, A.-S.; Vieira, H.L.A.; Kroemer, G.; Brenner, C. The Adenine Nucleotide Translocator in Apoptosis. Biochimie 2002, 84, 167-176.

82. Halestrap, A.P.; McStay, G.P.; Clarke, S.J. The Permeability Transition Pore Complex: Another View. Biochimie 2002, 84, 153-166.

83. Belzacq, A.-S.; Vieira, H.L.A.; Verrier, F.; Vandecasteele, G.; Cohen, I.; Prevost, M.-C.; Larquet, E.; Pariselli, F.; Petit, P.X.; Kahn, A.; Rizzuto, R.; Brenner, C.; Kroemer, G. Bcl-2 and Bax Modulate Adenine Nucleotide Translocase Activity. Cancer Res. 2003, 63, 541-546.

84. Willis, S.N.; Fletcher, J.I.; Kaufmann, T.; van Delft, M.F.; Chen, L.; Czabotar, P.E.; Ierino, H.; Lee, E.F.; Fairlie, W.D.; Bouillet, P.; Strasser, A.; Kluck, R.M.; Adams, J.M.; Huang, D.C.S. Apoptosis Initiated When BH3 Ligands Engage Multiple Bcl-2 Homologs, Not Bax or Bak. Science 2007, 315, 856-859.

85. Morellet, N.; Bouaziz, S.; Petitjean, P.; Roques, B.P. NMR Structure of the HIV-1 Regulatory Protein VPR. J. Mol. Biol. 2003, 327, 215-227.

86. Bruns, K.; Fossen, T.; Wray, V.; Henklein, P.; Tessmer, U.; Schubert, U. Structural Characterization of the HIV-1 Vpr N Terminus. J. Biol. Chem. 2003, 278, 43188-43201.

87. Bruns, K.; Studtrucker, N.; Sharma, A.; Fossen, T.; Mitzner, D.; Eissman, A.; Tessmer, U.; Roder, R.; Henklein, P.; Wray, V.; Schubert, U. Structural Characterization and Oligomerization of PB1-F2, a Proapoptotic Influenza A Virus Protein. J. Biol. Chem. 2007, 282, 353-363.

88. Tripathy, B.C.; Mohanty, P. Zinc Inhibition of Electron Transport in Isolated Chloroplasts. Plant Physiol. 1980, 66, 1174-1178.

89. Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Plant Physiol. 1949, 24, 1-15.

90. Jagendorf, A.T.; Uribe, E. ATP Formation Caused by Acid-Base Transition of Spinach Chloroplasts. Proc. Natl. Acad. Sci. USA 1966, 55, 170-177.

91. Taussky, H.H.; Shorr, E. A Microcolorimetric Method for the Determination of Inorganic Phosphorus. J. Biol. Chem. 1953, 202, 675-685.

92. Schägger, H.; Pfeiffer, K. The Ratio of Oxidative Phosphorylation Complexex I-V in Bovine Heart Mitochondria and the Composition of Respiratory Chain Supercomplexes. J. Biol. Chem. 2001, 276, 37861-37867.

93. Wittig, I.; Carrozzo, R.; Santorelli, F.M.; Schägger, H. Supercomplexes and Subcomplexes of Mitochondrial Oxidative Phosphorylation. Biochim. Biophys. Acta 2006, 1757, 1066-1072.

94. Lancaster, C.R.D.; Sauer, U.S.; Groβ, R.; Haas, A.H.; Graf, J.; Schwalbe, H.; Mäntele, W.; Simon, J.; Madej, M.G. Experimental Support for the “E Pathway Hypothesis” of Coupled Transmembrane e- and H+ Transfer in Dihemic Quinol: Fumarate Reductase. Proc. Natl. Acad. Sci. USA 2005, 102, 18860-18865.

95. MacMillan, F.; Budiman, K.; Angerer, H.; Michel, H. The Role of Tryptophan 272 in the Paracoccus denitrificans Cytochrome c Oxidase. FEBS Lett. 2006, 580, 1345-1349.

96. Belevich, I.; Bloch, D.A.; Belevich, N.; Wikström, M.; Verkhovsky, M.I. Exploring the Proton Pump Mechanism of Cytochrome c Oxidase in Real Time. Proc. Natl. Acad. Sci. USA 2007, 104, 2685-2690.

97. Kim, Y.C.; Wikström, M.; Hummer, G. Kinetic Models of Redox-Coupled Proton Pumping. Proc. Natl. Acad. Sci. USA 2007, 104, 2169-2174.


rating: 5.00 from 7 votes | updated on: 29 Nov 2008 | views: 13781 |

Rate article:







excellent!bad…