Login

Join for Free!
112397 members
table of contents table of contents

In this work, the effect of ethylene on flower opening of cut …


Biology Articles » Agriculture » Plant Production » Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha

Abstract
- Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha

RESEARCH PAPER

Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha

Nan Ma *, Hui Tan *, Xiaohui Liu, Jingqi Xue, Yunhui Li and Junping Gao{dagger}

Department of Ornamental Horticulture, China Agricultural University, Beijing 100094, China

{dagger}To whom correspondence should be addressed. E-mail: gaojp@cau.edu.cn

Received 28 September 2005; Accepted 26 April 2006

  

In this work, the effect of ethylene on flower opening of cut rose (Rosa hybrida) cv. Samantha was studied. However, although ethylene hastened the process of flower opening, 1-MCP (1-methylcyclopropene), an ethylene action inhibitor, impeded it. Ethylene promoted ethylene production in petals, but 1-MCP did not inhibit this process. Of the four ethylene biosynthetic genes tested, Rh-ACS1 and Rh-ACS2 were undetectable; Rh-ACS3 and Rh-ACO1 expression was enhanced by ethylene slightly and greatly, respectively. However, their mRNA amounts were not inhibited by 1-MCP compared with controls. Expression of seven signalling component genes was also studied, including three ethylene receptors (Rh-ETR1, Rh-ETR3, and Rh-ETR5), two CTRs (Rh-CTR1 and Rh-CTR2), and two transcription factors (Rh-EIN3-1 and Rh-EIN3-2). Transcripts of Rh-ETR5, Rh-EIN3-1, and Rh-EIN3-2 were accumulated in a constitutive manner and had no or little response to ethylene or 1-MCP, while transcript levels of Rh-ETR1 and Rh-CTR1 were substantially elevated by ethylene, and those of Rh-ETR3 and Rh-CTR2 were greatly enhanced by ethylene; 1-MCP reduced all the four genes to levels much less than those in control flowers. These results show that ethylene triggers physiological responses related to flower opening in cut rose cv. Samantha, and that continued ethylene perception results in flower opening. Ethylene may regulate flower opening mainly through expression of two ethylene receptor genes (Rh-ETR1 and Rh-ETR3) and two CTR (Rh-CTR1 and Rh-CTR2) genes.

Key words: Cut roses, ethylene biosynthesis, ethylene signalling, flower opening, gene expression, Rosa hybrida

Journal of Experimental Botany 2006 57(11):2763-2773. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/)


rating: 5.00 from 1 votes | updated on: 24 Oct 2007 | views: 3431 |

Rate article:







excellent!bad…