Login

Join for Free!
112205 members
table of contents table of contents

The authors have demonstrated that a short, all-atom minimization with fixed C&…


Biology Articles » Methods & Techniques » Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field

Abstract
- Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field

Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field

Sebastian Kmiecik, Dominik Gront and Andrzej Kolinski

University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland

Background

Although experimental methods for determining protein structure are providing high resolution structures, they cannot keep the pace at which amino acid sequences are resolved on the scale of entire genomes. For a considerable fraction of proteins whose structures will not be determined experimentally, computational methods can provide valuable information. The value of structural models in biological research depends critically on their quality. Development of high-accuracy computational methods that reliably generate near-experimental quality structural models is an important, unsolved problem in the protein structure modeling.

Results

Large sets of structural decoys have been generated using reduced conformational space protein modeling tool CABS. Subsequently, the reduced models were subject to all-atom reconstruction. Then, the resulting detailed models were energy-minimized using state-of-the-art all-atom force field, assuming fixed positions of the alpha carbons. It has been shown that a very short minimization leads to the proper ranking of the quality of the models (distance from the native structure), when the all-atom energy is used as the ranking criterion. Additionally, we performed test on medium and low accuracy decoys built via classical methods of comparative modeling. The test placed our model evaluation procedure among the state-of-the-art protein model assessment methods.

Conclusion

These test computations show that a large scale high resolution protein structure prediction is possible, not only for small but also for large protein domains, and that it should be based on a hierarchical approach to the modeling protocol. We employed Molecular Mechanics with fixed alpha carbons to rank-order the all-atom models built on the scaffolds of the reduced models. Our tests show that a physic-based approach, usually considered computationally too demanding for large-scale applications, can be effectively used in such studies.

 



BMC Structural Biology 2007, 7:43. This is an Open Access article distributed under the terms of the Creative Commons Attribution License.

rating: 0.00 from 0 votes | updated on: 23 Aug 2007 | views: 5600 |

Rate article:







excellent!bad…