Join for Free!
122497 members

table of contents table of contents

The authors studied tissue engineering in space by using cartilage as a …

Home » Biology Articles » Bioengineering » Tissue engineering of cartilage in space

- Tissue engineering of cartilage in space

Tissue engineering of cartilage in space

(spaceflight / microgravity / chondrocyte / polymer / bioreactor)

Lisa E. Freed*,dagger, Robert Langer*,Dagger, Ivan Martin*, Neal R. Pellis§, and Gordana Vunjak-Novakovic*

* Division of Health Sciences and Technology and Dagger Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, and § National Aeronautics and Space Administration, Johnson Space Center BT/37, Houston, TX 77058

Contributed by Robert Langer, September 29, 1997


Tissue engineering of cartilage, i.e., the in vitro cultivation of cartilage cells on synthetic polymer scaffolds, was studied on the Mir Space Station and on Earth. Specifically, three-dimensional cell-polymer constructs consisting of bovine articular chondrocytes and polyglycolic acid scaffolds were grown in rotating bioreactors, first for 3 months on Earth and then for an additional 4 months on either Mir (10-4-10-6g) or Earth (1 g). This mission provided a unique opportunity to study the feasibility of long-term cell culture flight experiments and to assess the effects of spaceflight on the growth and function of a model musculoskeletal tissue. Both environments yielded cartilaginous constructs, each weighing between 0.3 and 0.4 g and consisting of viable, differentiated cells that synthesized proteoglycan and type II collagen. Compared with the Earth group, Mir-grown constructs were more spherical, smaller, and mechanically inferior. The same bioreactor system can be used for a variety of controlled microgravity studies of cartilage and other tissues. These results may have implications for human spaceflight, e.g., a Mars mission, and clinical medicine, e.g., improved understanding of the effects of pseudo-weightlessness in prolonged immobilization, hydrotherapy, and intrauterine development.

Source: Proc. Natl. Acad. Sci. USA Vol. 94, pp. 13885-13890, December 1997

rating: 0.00 from 0 votes | updated on: 31 Oct 2006 | views: 7661 |

Rate article: