Login

Join for Free!
112476 members

Biology Articles » Biophysics » New study explains why hotter is better for insects

New study explains why hotter is better for insects

Organisms have been able to adapt to environments ranging from cold polar oceans to hot thermal vents. However, University of Washington researchers have discovered a limit to the powerful forces of natural selection, at least when it comes to the adaptation of insects to cold temperatures.

"For thermodynamic reasons, cold temperatures present a challenging problem for ectothermic [cold-blooded] organisms because they slow biological processes, thus reducing rates of movement, feeding, and population growth," explains author M. R. Frazier.

Many researchers believe that biochemical adaptations can eventually compensate for the effects of low body temperatures, but Frazier and her colleague's recent thermodynamic model, forthcoming in the October issue of The American Naturalist, argues against such compensation.

 

To address this controversy, the researchers conducted a comparative analysis of published data on the thermal dependence of population growth rate for 65 insect species. They found that insects adapted to cold environments have slower maximum population growth rates than those adapted to warm environments, despite their long evolutionary history in such environments.

"At least with respect to insect population growth rates," says Frazier, "our data suggest that hotter is better. We see little evidence of evolutionary compensation."

This research suggests that adaptation to warmer or to colder temperature inevitably alters the population dynamics of insects, a result that has important consequences for agriculture, public health, and conservation.

Source: University of Chicago Press Journals. October 2006.


rating: 0.00 from 0 votes | updated on: 4 Nov 2008 | views: 1629 |

Rate article:







excellent!bad…