Login

Join for Free!
118334 members
table of contents table of contents

This paper assessed the reliability of this simple, freely available software package …


Biology Articles » Conservation Biology » Spot the match – wildlife photo-identification using information theory » Conclusion

Conclusion
- Spot the match – wildlife photo-identification using information theory

The application of I3S to any animal with a unique, stable spot pattern holds particular promise for mark-recapture studies. The program is particularly well suited to organisms that have minimal contortion in the desired reference area and have spots that are relatively homogenous in diameter and size. Large, irregular spots may cause problems during fingerprinting because the centre of the spot may vary according to the user's preference. For example, a species with a spot pattern that may not be well suited to I3S is the manta ray (Manta birostris) due to its large, sparsely spaced and irregular ventral spot patterns [41]. However, other species of ray such as the white spotted eagle ray (Aetobatus narinari) have evenly spaced and relatively homogenous spot patterns on the dorsal surface that would lend themselves more readily to the fingerprinting process. Other organisms that are potentially suitable candidates include: felids, some cetaceans, many birds, amphibians and reptiles, and other elasmobranchs.

The benefits of non-intrusive mark-recapture studies are numerous, not only in terms of animal welfare, but also from a logistical perspective. The software availability and applicability of I3S for a wide range of animals will enable researchers to store and match images for mark-recapture purposes, thus hopefully contributing to robust and more precise estimates of key life history parameters. Reliable, effective photo-identification for animals with stable, natural markings is now possible for anyone armed with a digital camera.


rating: 0.00 from 0 votes | updated on: 25 Apr 2007 | views: 4174 |

Rate article:







excellent!bad…