Login

Join for Free!
113982 members
table of contents table of contents

Biology Articles » Bioengineering » Skeletal muscle tissue engineering » References

References
- Skeletal muscle tissue engineering

  1. Mooney D.J., Mikos A.G., Growing new organs, Sci. Am., 280: 60-65, 1999
  2.  Law P.K., Goodwin T.G., Fang Q., Deering M.B., Duggirala V., Larkin C., Florendo J.A., Kirby D.S., Li H.J., Chen M. et al., Cell transplantation as an experi- mental treatment for Duchenne muscular dystrophy, Cell Transplant., 2: 485-505, 1993
  3. Guettier-Sigrist S., Coupin G., Braun S., Warter J.M., Poindron P., Muscle could be the therapeutic target in SMA treatment, J. Neurosci. Res., 53: 663-669,1998
  4. DiEdwardo C.A., Petrosko P., Acarturk T.O., DiMilla P.A., LaFramboise W.A., Johnson P.C., Muscle tissue engineering, Clin. Plast. Surg., 26: 647-656, 1999
  5. Bach A.D., Stem-Straeter J., Beier J.P., Bannasch H., Stark G.B., Engineering of muscle tissue, Clin. Plast. Surg., 30: 589-599, 2003
  6. Bonassar L.J., Vacanti C.A., Tissue engineering: the first decade and beyond, J. Cell Biochem. Suppl., 30-31: 297- 303, 1998
  7. Vangsness C.T. Jr., Kurzweil P.R., Lieberman J.R., Restoring articular cartilage in the knee, Am. J. Orthop., 33: 29-34, 2004
  8. Oakes B.W., Orthopaedic tissue engineering: from labora- tory to the clinic, Med. J. Aust., 180: S35-S38, 2004
  9. Kopp J., Jeschke M.G., Bach A.D., Kneser U., Horch R. E., Applied tissue engineering in the closure of severe burns and chronic wounds using cultured human autolo- gous keratinocytes in a natural fibrin matrix, Cell Tissue Bank, 5: 81-87, 2004
  10. Kojima K., Bonassar L.J., Ignotz R.A., Syed K., Cortiella J., Vacanti C.A., Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea, Ann. Thorac. Surg., 76: 1884-1888, 2003
  11. Chang S. C., Tobias G., Roy A.K., Vacanti C.A. , Bonassar L.J., Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding, Plast. Reconstr. Surg., 112: 793-799, 2003
  12. Horch R.E., Debus M., Wagner G., Stark G. B., Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis, Tissue Eng., 6: 53-67, 2000
  13. Hurme T., Kalimo H., Lehto M., Jarvinen M., Healing of skeletal muscle injury: an ultrastructural and immuno- histochemical study, Med. Sci. Sports Exerc., 23: 801-810, 1991
  14. Campion D.R., The muscle satellite cell: a review, Int. Rev. Cytol., 87: 225-251, 1984
  15. Allen R.E., Temm-Grove C.J., Sheehan S.M., Rice G., Skeletal muscle satellite cell cultures, Methods Cell Biol., 52: 155-176, 1997
  16. Hill M., Wernig A., Goldspink G., Muscle satellite (stem) cell activation during local tissue injury and repair, J. Anat., 203: 89-99, 2003
  17. Li Y., Huard J., Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle, Am. J. Pathol., 161: 895-907, 2002
  18. Guettier-Sigrist S., Coupin G., Braun S., Rogovitz D., Courdier I., Warter J.M., Poindron P., On the possible role of muscle in the pathogenesis of spinal muscular atro- phy, Fundam. Clin. Pharmacol., 15: 31-40, 2001
  19. Fauza D.O., Marler J.J., Koka R., Forse R.A., Mayer J. E., Vacanti J.P., Fetal tissue engineering: diaphragmatic replacement, J. Pediatr. Surg., 36: 146-151,2001
  20. Blau H.M., Webster C., Isolation and characterization of human muscle cells, Proc. Natl. Acad. Sci. USA, 78: 5623- 5627, 1981
  21. Vandenburgh H.H., Functional assessment and tissue design of skeletal muscle, Ann. N.Y. Acad. Sci., 961: 201- 202, 2002
  22. Okano T., Satoh S., Oka T., Matsuda T., Tissue engi- neering of skeletal muscle. Highly dense, highly oriented hybrid muscular tissues biomimicking native tissues, Asaio. J., 43: M749-753, 1997
  23. Acarturk T.O., Peel M.M., Petrosko P., LaFramboise W., Johnson P. C., DiMilla P.A., Control of attachment, morphology, and proliferation of skeletal myoblasts on silanized glass, J. Biomed. Mater. Res., 44: 355-370, 1999
  24. Okano T., Matsuda T., Muscular tissue engineering: cap-illary-incorporated hybrid muscular tissues in vivo tissue culture, Cell Transplant., 7: 435-442, 1998
  25. Fuhrer C., Gautam M., Sugiyama J.E., Hall Z.W., Roles of rapsyn and agrin in interaction of postsynaptic proteins with acetylcholine receptors, J. Neurosci., 19: 6405-6416, 1999
  26. Marzaro M., Conconi M.T., Perin L., Giuliani S., Gamba P., De Coppi P., Perrino G.P., Parnigotto P.P., Nussdorfer G.G., Autologous satellite cell seeding improves in vivo biocompatibility of homologous muscle acellular matrix implants, Int. J. Mol. Med., 10: 177-182, 2002
  27. Blanco-Bose W.E., Yao C.C., Kramer R.H., Blau H.M., Purification of mouse primary myoblasts based on alpha 7 integrin expression, Exp. Cell Res., 265: 212-220, 2001
  28. Kosnik P.E., Faulkner J.A., Dennis R.G., Functional development of engineered skeletal muscle from adult and neonatal rats, Tissue Eng., 7: 573-584, 2001
  29. Neumann T., Hauschka S.D., Sanders J.E., Tissue engineering of skeletal muscle using polymer fiber arrays, Tissue Eng., 9: 995-1003, 2003
  30. Delfini M., Hirsinger E., Pourquie O., Duprez D., Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis, Development, 127: 5213-5224, 2000
  31. Bach A.D., Beier J.P., Stark G.B., Expression of Trisk 51, agrin and nicotinic-acetycholine receptor epsilon-subunit during muscle development in a novel three-dimensional muscle-neuronal co-culture system, Cell Tissue Res., 314: 263-274, 2003
  32. Weintraub H., The MyoD family and myogenesis: redundancy, networks, and thresholds, Cell, 75: 1241-1244, 1993
  33. Molkentin J.D., Olson E.N., Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors, Proc. Natl. Acad. Sci. USA, 93: 9366-9373, 1996
  34. Molkentin J.D., Olson E.N., Defining the regulatory networks for muscle development, Curr. Opin. Genet. Dev., 6: 445-453, 1996
  35. Goldspink G., Gene expression in muscle in response to exercise, J. Muscle Res. Cell. Motil., 24: 121-126, 2003
  36. Goldspink G., Scutt A., Loughna P.T., Wells D.J., Jaenicke T., Gerlach G.F., Gene expression in skeletal muscle in response to stretch and force generation, Am. J. Physiol., 262: R356-R363, 1992
  37. Powell C.A., Smiley B.L., Mills J., Vandenburgh H.H., Mechanical stimulation improves tissue-engineered human skeletal muscle, Am. J. Physiol. Cell Physiol., 283: C1557-C1565, 2002
  38. Tatsumi R., Sheehan S.M., Iwasaki H., Hattori A., Allen R.E., Mechanical stretch induces activation of skeletal muscle satellite cells in vitro, Exp. Cell Res., 267: 107-114, 2001
  39. Noah E.M., Winkel R., Schramm U., Kuhnel W., Impact of innervation and exercise on muscle regeneration in neovascularized muscle grafts in rats, Ann. Anat., 184: 189-197, 2002
  40. Dusterhoft S., Pette D., Effects of electrically induced contractile activity on cultured embryonic chick breast muscle cells, Differentiation, 44: 178-184, 1990
  41. Wehrle U., Dusterhoft S., Pette D., Effects of chronic electrical stimulation on myosin heavy chain expression in satellite cell cultures derived from rat muscles of different fiber-type composition, Differentiation, 58: 37-46, 1994
  42. Dennis R.G., Kosnik P.E. 2nd, Gilbert M.E., Faulkner J.A., Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines, Am. J. Physiol. Cell. Physiol., 280: C288-C295, 2001
  43. Kanno S., Oda N., Abe M., Saito S., Hori K., Handa Y., Tabayashi K., Sato Y., Establishment of a simple and practical procedure applicable to therapeutic angiogenesis, Circulation, 99: 2682-2687, 1999
  44. Adams J.C., Watt F.M., Regulation of development and differentiation by the extracellular matrix, Development, 117: 1183-1198, 1993
  45. Mulder M.M., Hitchcock R.W., Tresco P.A., Skeletal myogenesis on elastomeric substrates: implications for tissue engineering, J. Biomater. Sci. Polym. Ed., 9: 731-748, 1998
  46. Freed L.E., Vunjak-Novakovic G., Biron R.J., Eagles D. B., Lesnoy D.C., Barlow S.K., Langer R., Biodegradable polymer scaffolds for tissue engineering, Biotechnology (N Y), 12: 689-93,1994
  47. Grande D.A., Halberstadt C., Naughton G., Schwartz R., Manji R., Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts, J. Biomed. Mater. Res, 34: 211-220, 1997
  48. Cronin E.M., Thurmond F.A., Bassel-Duby R., Williams R.S., Wright W. E., Nelson K. D., Garner H. R., Protein-coated poly(L-lactic acid) fibers provide a substrate for differentiation of human skeletal muscle cells, J. Biomed. Mater. Res., 69A: 373-381, 2004
  49. Saxena A.K., Marler J., Benvenuto M., Willital G.H., Vacanti J.P., Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies, Tissue Eng., 5: 525-532, 1999
  50. Dusterhoft S., Pette D., Satellite cells from slow rat muscle express slow myosin under appropriate culture conditions, Differentiation, 53: 25-33, 1993
  51. Rowley J.A., Madlambayan G., Mooney D.J., Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials, 20: 45-53, 1999
  52. Borschel G. H., Dennis R.G., Kuzon W.M. Jr., Contractile skeletal muscle tissue-engineered on an acellular scaffold, Plast Reconstr Surg, 113: 595-602; discussion 603-604, 2004
  53. Rando T.A., Blau H.M., Methods for myoblast transplantation, Methods Cell Biol, 52: 261-272,1997
  54. Ye Q., Zund G., Benedikt P., Jockenhoevel S., Hoerstrup S.P., Sakyama S., Hubbell J.A., Turina M., Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering, Eur. J. Cardiothorac. Surg., 17: 587591, 2000
  55. Bach A.D., Bannasch H., Galla T.J., Bittner K.M., Stark G.B., Fibrin glue as matrix for cultured autologous urothelial cells in urethral reconstruction, Tissue Eng, 7: 45-53, 2001
  56. Albelda S.M., Buck C.A., Integrins and other cell adhesion molecules, FASEB J., 4: 2868-2880, 1990
  57. Saxena A.K., Willital G.H., Vacanti J.P., Vascularized three-dimensional skeletal muscle tissue-engineering, Biomed. Mater. Eng., 11: 275-281, 2001
  58. Miller R.G., Sharma K.R., Pavlath G.K., Gussoni E., Mynhier M., Lanctot A.M., Greco C.M., Steinman L., Blau H.M., Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study, Muscle Nerve, 20: 469-478, 1997
  59. Menasche P., Myoblast transfer in heart failure, Surg. Clin. North Am., 84: 125-139, 2004
  60. Atkins B.Z., Lewis C.W., Kraus W.E., Hutcheson K.A., Glower D.D., Taylor D.A., Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ, Ann. Thorac. Surg., 67: 124-129, 1999
  61. Gussoni E., Pavlath G.K., Lanctot A.M., Sharma K.R., Miller R.G., Steinman L., Blau H.M., Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation, Nature, 356: 435-438, 1992
  62. Rando T.A., Pavlath G.K., Blau H.M., The fate of myoblasts following transplantation into mature muscle, Exp. Cell Res., 220: 383-389, 1995
  63. Prelle K., Wobus A.M., Krebs O., Blum W.F., Wolf E., Overexpression of insulin-like growth factor-II in mouse embryonic stem cells promotes myogenic differentiation, Biochem. Biophys. Res. Commun., 277: 631-638, 2000
  64. Powell C., Shansky J., Del Tatto M., Forman D.E., Hennessey J., Sullivan K., Zielinski B.A., Vandenburgh H.H., Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy, Hum. Gene Ther., 10: 565-577, 1999
  65. Barr E., Leiden J.M., Systemic delivery of recombinant proteins by genetically modified myoblasts, Science, 254: 1507-1509, 1991
  66. el Oakley R.M., Brand N.J., Burton P.B., McMullen M.C., Adams G.B., Poznansky M.C., Barton P.J., Yacoub M.H., Efficiency of a high-titer retroviral vector for gene transfer into skeletal myoblasts, J. Thorac. Cardiovasc. Surg., 115: 1-8, 1998
  67. Law P.K., Goodwin T.G., Fang Q., Quinley T., Vastagh G., Hall T., Jackson T., Deering M. B., Duggirala V., Larkin C., Florendo J. A., Li L.M., Yoo T.J., Chase N., Neel M., Krahn T., Holcomb R.L., Human gene therapy with myoblast transfer, Transplant. Proc., 29: 2234-2237, 1997
  68. Deasy B.M., Huard J., Gene therapy and tissue engineering based on muscle-derived stem cells, Curr. Opin. Mol. Ther., 4: 382-389, 2002
  69. Beier J.P., Kneser U., Stern-Strater J., Stark G.B., Bach A.D., Y chromosome detection of three-dimensional tis-sue-engineered skeletal muscle constructs in a syngeneic rat animal model, Cell Transplant, 13: 45-53, 2004
  70. Young H.E., Duplaa C., Romero-Ramos M., Chesselet M.F., Vourc’h P., Yost M.J., Ericson K., Terracio L., Asahara T., Masuda H., Tamura-Ninomiya S., Detmer K., Bray R.A., Steele T.A., Hixson D., el-Kalay M., Tobin B.W., Russ R.D., Horst M.N., Floyd J.A., Henson N.L., Hawkins K.C., Groom J., Parikh A., Blake L., Bland L.J., Thompson A.J., Kirincich A., Moreau C., Hudson J., Bowyer F.P. 3rd, Lin T.J., Black A.C. Jr., Adult reserve stem cells and their potential for tissue engineering, Cell Biochem. Biophys., 40: 1-80, 2004
  71. Korbling M., Estrov Z., Champlin R., Adult stem cells and tissue repair, Bone Marrow Transplant, 32 Suppl 1: S23-S24, 2003

rating: 2.40 from 10 votes | updated on: 30 Sep 2006 | views: 15241 |

Rate article:







excellent!bad…