Login

Join for Free!
114804 members
table of contents table of contents

Biology Articles » Molecular Biology » RNA polymerase II and the integration of nuclear events » References

References
- RNA polymerase II and the integration of nuclear events

  • Albert, A., S. Lavoie, and M. Vincent. 1999. A hyperphosphorylated form of RNA polymerase II is the major interphase antigen of the phosphoprotein antibody MPM-2 and interacts with the peptidyl-prolyl isomerase Pin1. J. Cell. Sci. 112: 2493-2500
  • Ares, M., Jr., L. Grate, and M.H. Pauling. 1999. A handful of intron-containing genes produces the lion's share of yeast mRNA. RNA 5: 1138-1139
  • Attwooll, C., M. Tariq, M. Harris, J.D. Coyne, N. Telford, and J.M. Varley. 1999. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene 18: 7599-7601
  • Baechtold, H., M. Kuroda, J. Sok, D. Ron, B.S. Lopez, and A.T. Akhmedov. 1999. Human 75-kDa DNA-pairing protein is identical to the pro-oncoprotein TLS/FUS and is able to promote D-loop formation. J. Biol. Chem. 274: 34337-34342
  • Bauren, G. and L. Wieslander. 1994. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76: 183-192
  • Bauren, G., S. Belikov, and L. Wieslander. 1998. Transcriptional termination in the Balbiani ring 1 gene is closely coupled to 3'-end formation and excision of the 3'-terminal intron. Genes & Dev. 12: 2759-2769
  • Bentley, D. 1999. Coupling RNA polymerase II transcription with pre-mRNA processing. Curr. Opin. Cell. Biol. 11: 347-351
  • Bertolotti, A., Y. Lutz, D.J. Heard, P. Chambon, and L. Tora. 1996. hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J. 15: 5022-5031
  • Beyer, A.L. and Y.N. Osheim. 1988. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes & Dev. 2: 754-765
  • Birse, C.E., L. Minvielle-Sebastia, B.A. Lee, W. Keller, and N.J. Proudfoot. 1998. Coupling termination of transcription to messenger RNA maturation in yeast. Science 280: 298-301
  • Bourquin, J.P., I. Stagljar, P. Meier, P. Moosmann, J. Silke, T. Baechi, O. Georgiev, and W. Schaffner. 1997. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II. Nucleic Acids Res. 25: 2055-2061
  • Bregman, D.B., L. Du, S. van der Zee, and S.L. Warren. 1995. Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J. Cell. Biol. 129: 287-298
  • Burd, C.G. and G. Dreyfuss. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265: 615-621
  • Carlson, M. 1997. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu. Rev. Cell. Dev. Biol. 13: 1-23
  • Caspary, F., A. Shevchenko, M. Wilm, and B. Seraphin. 1999. Partial purification of the yeast U2 snRNP reveals a novel yeast pre-mRNA splicing factor required for pre-spliceosome assembly. EMBO J. 18: 3463-3474
  • Chabot, B., S. Bisotto, and M. Vincent. 1995. The nuclear matrix phosphoprotein p255 associates with splicing complexes as part of the [U4/U6.U5] tri-snRNP particle. Nucleic Acids Res. 23: 3206-3213
  • Cho, E.J., T. Takagi, C.R. Moore, and S. Buratowski. 1997. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes & Dev. 11: 3319-3326
  • Cho, E.J., C.R. Rodriguez, T. Takagi, and S. Buratowski. 1998. Allosteric interactions between capping enzyme subunits and the RNA polymase II carboxy-terminal domain. Genes & Dev. 12: 3482-3487
  • Cho, H., T.K. Kim, H. Mancebo, W.S. Lane, O. Flores, and D. Reinberg. 1999. A protein phosphatase functions to recycle RNA polymerase II. Genes & Dev. 13: 1540-1552
  • Colgan, D.F. and J.L. Manley. 1997. Mechanism and regulation of mRNA polyadenylation. Genes & Dev. 11: 2755-2766
  • Connelly, S. and J.L. Manley. 1988. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II. Genes & Dev. 2: 440-452
  • Conrad, N.K., S.M. Wilson, E.J. Steinmetz, M. Patturajan, D.A. Brow, M.S. Swanson, and J.L. Corden. 2000. A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II. Genetics 154: 557-571
  • Coppola, J.A., A.S. Field, and D.S. Luse. 1983. Promoter-proximal pausing by RNA polymerase II in vitro: transcripts shorter than 20 nucleotides are not capped. Proc. Natl. Acad. Sci. 80: 1251-1255
  • Corden, J.L. 1990. Tails of RNA polymerase II. Trends Biochem. Sci. 15: 383-387
  • Cramer, P., C.G. Pesce, F.E. Baralle, and A.R. Kornblihtt. 1997. Functional association between promoter structure and transcript alternative splicing. Proc. Natl. Acad. Sci. 94: 11456-11460
  • Cramer, P., J.F. Caceres, D. Cazalla, S. Kadener, A.F. Muro, F.E. Baralle, and A.R. Kornblihtt. 1999. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol. Cell 4: 251-258
  • Crozat, A., P. Aman, N. Mandahl, and D. Ron. 1993. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363: 640-644
  • Dahmus, M.E. 1996. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271: 19009-19012
  • Dantonel, J.C., K.G. Murthy, J.L. Manley, and L. Tora. 1997. Transcription factor TFIID recruits factor CPSF for formation of 3' end of mRNA. Nature 389: 399-402
  • Delattre, O., J. Zucman, B. Plougastel, C. Desmaze, T. Melot, M. Peter, H. Kovar, I. Joubert, P. de Jong, and G. Rouleau. 1992. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359: 162-165
  • Du, L. and S.L. Warren. 1997. A functional interaction between the carboxy-terminal domain of RNA polymerase II and pre-mRNA splicing. J. Cell. Biol. 136: 5-18
  • Dye, M.J. and N.J. Proudfoot. 1999. Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol. Cell 3: 371-378
  • Edery, I. and N. Sonenberg. 1985. Cap-dependent RNA splicing in a HeLa nuclear extract. Proc. Natl. Acad. Sci. 82: 7590-7594
  • Flaherty, S.M., P. Fortes, E. Izaurralde, I.W. Mattaj, and G.M. Gilmartin. 1997. Participation of the nuclear cap binding complex in pre-mRNA 3' processing. Proc. Natl. Acad. Sci. 94: 11893-11898
  • Gall, J.G., M. Bellini, Z. Wu, and C. Murphy. 1999. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol. Biol. Cell 10: 4385-4402
  • Ge, H., Y. Si, and R.G. Roeder. 1998a. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J. 17: 6723-6729
  • Ge, H., Y. Si, and A.P. Wolffe. 1998b. A novel transcriptional coactivator, p52, functionally interacts with the essential splicing factor ASF/SF2. Mol. Cell 2: 751-759
  • Gothel, S.F. and M.A. Marahiel. 1999. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell. Mol. Life Sci. 55: 423-436
  • Greenleaf, A.L. 1993. Positive patches and negative noodles: linking RNA processing to transcription? Trends Biochem. Sci. 18: 117-119
  • Hallier, M., A. Lerga, S. Barnache, A. Tavitian, and F. Moreau-Gachelin. 1998. The transcription factor Spi-1/PU.1 interacts with the potential splicing factor TLS. J. Biol. Chem. 273: 4838-4842
  • Hanes, S.D., P.R. Shank, and K.A. Bostian. 1989. Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast 5: 55-72
  • Hani, J., G. Stumpf, and H. Domdey. 1995. PTF1 encodes an essential protein in Saccharomyces cerevisiae, which shows strong homology with a new putative family of PPIases. FEBS Lett. 365: 198-202
  • Hani, J., B. Schelbert, A. Bernhardt, H. Domdey, G. Fischer, K. Wiebauer, and J.U. Rahfeld. 1999. Mutations in a peptidylprolyl-cis/trans-isomerase gene lead to a defect in 3'-end formation of a pre-mRNA in Saccharomyces cerevisiae. J. Biol. Chem. 274: 108-116
  • Hart, R.P., M.A. McDevitt, and J.R. Nevins. 1985. Poly(A) site cleavage in a HeLa nuclear extract is dependent on downstream sequences. Cell 43: 677-683
  • Hartzog, G.A., T. Wada, H. Handa, and F. Winston. 1998. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes & Dev. 12: 357-369
  • Hirose, Y. and J.L. Manley. 1997. Creatine phosphate, not ATP, is required for 3'-end cleavage of mammalian pre-mRNA in vitro. J. Biol. Chem. 272: 29636-29642
  • -----. 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395: 93-96
  • Hirose, Y., R. Tacke, and J.L. Manley. 1999. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes & Dev. 13: 1234-1239
  • Ho, C.K. and S. Shuman. 1999. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell 3: 405-411
  • Ho, C.K., V. Sriskanda, S. McCracken, D. Bentley, B. Schwer, and S. Shuman. 1998a. The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 273: 9577-9585
  • Ho, C.K., B. Schwer, and S. Shuman. 1998b. Genetic, physical, and functional interactions between the triphosphatase and guanylyltransferase components of the yeast mRNA capping apparatus. Mol. Cell. Biol. 18: 5189-5198
  • Hunter, T. 1998. Prolyl isomerases and nuclear function. Cell 92: 141-143
  • Jove, R. and J.L. Manley. 1982. Transcription initiation by RNA polymerase II is inhibited by S-adenosylhomocysteine. Proc. Natl. Acad. Sci. 79: 5842-5846
  • -----. 1984. In vitro transcription from the adenovirus 2 major late promoter utilizing templates truncated at promoter-proximal sites. J. Biol. Chem. 259: 8513-8521
  • Kim, E., L. Du, D.B. Bregman, and S.L. Warren. 1997. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J. Cell. Biol. 136: 19-28
  • Kleiman, F.E. and J.L. Manley. 1999. Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science 285: 1576-1579
  • Kramer, A. 1996. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65: 367-409
  • Lai, M.C., B.H. Teh, and W.Y. Tarn. 1999. A human papillomavirus E2 transcriptional activator. The interactions with cellular splicing factors and potential function in pre-mRNA processing. J. Biol. Chem. 274: 11832-11841
  • Lavigueur, A., H. LaBranche, A.R. Kornblihtt, and B. Chabot. 1993. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes & Dev. 7: 2405-2417
  • Liao, S.M., J. Zhang, D.A. Jeffery, A.J. Koleske, C.M. Thompson, D.M. Chao, M. Viljoen, H.J. van Vuuren, and R.A. Young. 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature 374: 193-196
  • Lo, H.J., H.K. Huang, and T.F. Donahue. 1998. RNA polymerase I-promoted HIS4 expression yields uncapped, polyadenylated mRNA that is unstable and inefficiently translated in Saccharomyces cerevisiae. Mol. Cell. Biol. 18: 665-675
  • Logan, J., E. Falck-Pedersen, J.E. Darnell, Jr., and T. Shenk. 1987. A poly(A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse beta maj-globin gene. Proc. Natl. Acad. Sci. 84: 8306-8310
  • Lopez, P.J. and B. Seraphin. 1999. Genomic-scale quantitative analysis of yeast pre-mRNA splicing: implications for splice-site recognition. RNA 5: 1135-1137
  • Lu, K.P., S.D. Hanes, and T. Hunter. 1996. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380: 544-547
  • Manley, J.L. and R. Tacke. 1996. SR proteins and splicing control. Genes & Dev. 10: 1569-1579
  • McCracken, S., N. Fong, E. Rosonina, K. Yankulov, G. Brothers, D. Siderovski, A. Hessel, S. Foster, S. Shuman, and D.L. Bentley. 1997a. 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes & Dev. 11: 3306-3318
  • McCracken, S., N. Fong, K. Yankulov, S. Ballantyne, G. Pan, J. Greenblatt, S.D. Patterson, M. Wickens, and D.L. Bentley. 1997b. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385: 357-361
  • McNeil, J.B., H. Agah, and D. Bentley. 1998. Activated transcription independent of the RNA polymerase II holoenzyme in budding yeast. Genes & Dev. 12: 2510-2521
  • Minvielle-Sebastian, L. and W. Keller. 1999. mRNA polyadenylation and its coupling to other RNA processing reactions and to transcription. Curr. Opin. Cell. Biol. 11: 352-357
  • Mintz, P.J., S.D. Patterson, A.F. Neuwald, C.S. Spahr, and D.L. Spector. 1999. Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 18: 4308-4320
  • Misteli, T. and D.L. Spector. 1998. The cellular organization of gene expression. Curr. Opin. Cell. Biol. 10: 323-331
  • -----. 1999. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol. Cell 3: 697-705
  • Misteli, T., J.F. Caceres, and D.L. Spector. 1997. The dynamics of a pre-mRNA splicing factor in living cells. Nature 387: 523-527
  • Moore, M.J., C.C. Query, and P.A. Sharp. 1993. Splicing of precursors to mRNAs by the spliceosome. In The RNA World (ed. R.F. Gesteland, et al.), pp. 303-358. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Mortillaro, M.J. and R. Berezney. 1998. Matrin CYP, an SR-rich cyclophilin that associates with the nuclear matrix and splicing factors. J. Biol. Chem. 273: 8183-8192
  • Mortillaro, M.J., B.J. Blencowe, X. Wei, H. Nakayasu, L. Du, S.L. Warren, P.A. Sharp, and R. Berezney. 1996. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl. Acad. Sci. 93: 8253-8257
  • Morris, D.P., H.P. Phatnani, and A.L. Greenleaf. 1999. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-end formation. J. Biol. Chem. 274: 31583-31587
  • Neugebauer, K.M. and M.B. Roth. 1997. Transcription units as RNA processing units. Genes & Dev. 11: 3279-3285
  • Niwa, M. and S.M. Berget. 1991. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes & Dev. 5: 2086-2095
  • Niwa, M., S.D. Rose, and S.M. Berget. 1990. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes & Dev. 4: 1552-1559
  • Orphanides, G., T. Lagrange, and D. Reinberg. 1996. The general transcription factors of RNA polymerase II. Genes & Dev. 10: 2657-2683
  • Osheim, Y.N., N.J. Proudfoot, and A.L. Beyer. 1999. EM visualization of transcription by RNA polymerase II: downstream termination requires a poly (A) signal but not transcript cleavage. Mol. Cell 3: 379-387
  • Patturajan, M., X. Wei, R. Berezney, and J.L. Corden. 1998. A nuclear matrix protein interacts with the phosphorylated C-terminal domain of RNA polymerase II. Mol. Cell. Biol. 18: 2406-2415
  • Potashkin, J., D. Kim, M. Fond, T. Humphrey, and D. Frendewey. 1998. Cell-division-cycle defects associated with fission yeast pre-mRNA splicing mutants. Curr. Genet. 34: 153-163
  • Proudfoot, N.J. 1989. How RNA polymerase II terminates transcription in higher eukaryotes. Trends Biochem. Sci. 14: 105-110
  • Reines, D., R.C. Conaway, and J.W. Conaway. 1999. Mechanism and regulation of transcriptional elongation by RNA polymerase II. Curr. Opin. Cell. Biol. 11: 342-346
  • Rodriguez, C.R., E.J. Cho, M.C. Keogh, C.L. Moore, A.L. Greenleaf, and S. Buratowski. 2000. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol. Cell. Biol. 20: 104-112
  • Schul, W., R. van Driel, and L. de Jong. 1998. A subset of poly(A) polymerase is concentrated at sites of RNA synthesis and is associated with domains enriched in splicing factors and poly(A) RNA. Exp. Cell. Res. 238: 1-12
  • Scully, R., S.F. Anderson, D.M. Chao, W. Wei, L. Ye, R.A. Young, D.M. Livingston, and J.D. Parvin. 1997a. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. 94: 5605-5610
  • Scully, R., J. Chen, R.L. Ochs, K. Keegan, M. Hoekstra, J. Feunteun, and D.M. Livingston. 1997b. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90: 425-435
  • Shen, M., P.T. Stukenberg, M.W. Kirschner, and K.P. Lu. 1998. The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes & Dev. 12: 706-720
  • Shuman, S. 1995. Capping enzyme in eukaryotic mRNA synthesis. Prog. Nucleic Acid Res. Mol. Biol. 50: 101-129
  • Singer, R.H. and M.R. Green. 1997. Compartmentalization of eukaryotic gene expression: causes and effects. Cell 91: 291-294
  • Sjogren, H., J. Meis-Kindblom, L.G. Kindblom, P. Aman, and G. Stenman. 1999. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res. 59: 5064-5067
  • Spector, D.L. 1993. Macromolecular domains within the cell nucleus. Annu. Rev. Cell. Biol. 9: 265-315
  • Steinmetz, E.J. 1997. Pre-mRNA processing and the CTD of RNA polymerase II: the tail that wags the dog? Cell 89: 491-494
  • Steinmetz, E.J. and D.A. Brow. 1996. Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1. Mol. Cell. Biol. 16: 6993-7003
  • -----. 1998. Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association. Proc. Natl. Acad. Sci. 95: 6699-6704
  • Sterner, D.E., J.M. Lee, S.E. Hardin, and A.L. Greenleaf. 1995. The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex. Mol. Cell. Biol. 15: 5716-5724
  • Svejstrup, J.Q., W.J. Feaver, and R.D. Kornberg. 1996. Subunits of yeast RNA polymerase II transcription factor TFIIH encoded by the CCL1 gene. J. Biol. Chem. 271: 643-645
  • Swanson, M.S. and F. Winston. 1992. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in saccharomyces cerevisiae. Genetics 132: 325-336
  • Takagaki, Y. and J.L. Manley. 1998. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol. Cell 2: 761-771
  • -----. 2000. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol. Cell. Biol. 20: 1515-1525
  • Wada, T., T. Takagi, Y. Yamaguchi, A. Ferdous, T. Imai, S. Hirose, S. Sugimoto, K. Yano, G.A. Hartzog, F. Winston, S. Buratowski, and H. Handa. 1998a. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes & Dev. 12: 343-356
  • Wada, T., T. Takagi, Y. Yamaguchi, D. Watanabe, and H. Handa. 1998b. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 17: 7395-7403
  • Weeks, J.R., S.E. Hardin, J. Shen, J.M. Lee, and A.L. Greenleaf. 1993. Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: Correlations with gene activity and transcript processing. Genes & Dev. 7: 2329-2344
  • Wen, Y. and A.J. Shatkin. 1999. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes & Dev. 13: 1774-1779
  • Whitelaw, E. and N. Proudfoot. 1986. Alpha-thalassaemia caused by a poly(A) site mutation reveals that transcriptional termination is linked to 3' end processing in the human alpha 2 globin gene. EMBO J. 5: 2915-2922
  • Wu, L.C., Z.W. Wang, J.T. Tsan, M.A. Spillman, A. Phung, X.L. Xu, M.C. Yang, L.Y. Hwang, A.M. Bowcock, and R. Baer. 1996. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 14: 430-440
  • Yaffe, M.B., M. Schutkowski, M. Shen, X.Z. Zhou, P.T. Stukenberg, J.U. Rahfeld, J. Xu, J. Kuang, M.W. Kirschner, G. Fischer, L.C. Cantley, and K.P. Lu. 1997. Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278: 1957-1960
  • Yang, L., L.J. Embree, T. Schickwann, and D.D. Hickstein. 1998. Oncoprotein TLS interacts with serine-arginine proteins involved in RNA splicing. J. Biol. Chem. 273: 27761-27764
  • Yonaha, M. and N.J. Proudfoot. 1999. Specific transcriptional pausing activates polyadenylation in a coupled in vitro system. Mol. Cell 3: 593-600
  • Yue, Z., E. Maldonado, R. Pillutla, H. Cho, D. Reinberg, and A.J. Shatkin. 1997. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc. Natl. Acad. Sci. 94: 12898-12903
  • Yuryev, A., M. Patturajan, Y. Litingtung, R.V. Joshi, C. Gentile, M. Gebara, and J.L. Corden. 1996. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl. Acad. Sci. 93: 6975-6980
  • Zhang, D., A.J. Paley, and G. Childs. 1998. The transcriptional repressor ZFM1 interacts with and modulates the ability of EWS to activate transcription. J. Biol. Chem. 273: 18086-18091
  • Zhang, G., K.L. Taneja, R.H. Singer, and M.R. Green. 1994. Localization of pre-mRNA splicing in mammalian nuclei. Nature 372: 809-812
  • Zhao, J., L. Hyman, and C. Moore. 1999a. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. 63: 405-445
  • Zhao, J., M. Kessler, S. Helmling, J.P. O'Connor, and C. Moore. 1999b. Pta1, a component of yeast CF II, is required for both cleavage and poly(A) addition of mRNA precursor. Mol. Cell. Biol. 19: 7733-7740
  • Zinszner, H., R. Albalat, and D. Ron. 1994. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes & Dev. 8: 2513-2526

rating: 4.36 from 11 votes | updated on: 19 Dec 2006 | views: 24568 |

Rate article:







excellent!bad…