Login

Join for Free!
114602 members
table of contents table of contents

Joining a model for the molecular evolution of a protein family to …


Biology Articles » Geobiology » The planetary biology of cytochrome P450 aromatases » Figures

Figures
- The planetary biology of cytochrome P450 aromatases

..................................................

Figure 1 Reactions catalyzed by aromatases on multiple androgenic substrates.

..................................................

Figure 2 Dating the pig duplication events. An evolutionary tree, following the topology of Figure 5, showing estimated TREx distances for individual branches calculated from reconstructed ancestral sequences. The scale corresponds to evolutionary time (in million years) estimated from the TREx's using a first order rate constant for transitions of 3 × 10-9 changes per base per year.

..................................................

Figure 3 The amino acid alignment of exon 4 of two aromatase isoforms from both peccary and babirusa sequences with exon 4 of pig aromatase isoforms ovarian, fetal, and placental. Asterisks represent conserved sites.

..................................................

Figure 4 Cladogram of the order Artiodactyla showing the extant families and some selected extinct ones. Ruminantia includes the modern families Tragulidae, Giraffidae, Bovidae, Moschidae, and Cervidae, plus a number of extinct families. "Dichobunidae" is a paraphyletic assemblage of primitive taxa considered broadly ancestral to the later families. The interrelationships of the families reflect the "traditional" relationship based on morphology [85]. Different arrangements based on molecular information [86, 87] would alter the placement of the Camelidae and Hippopotamidae but would make no difference to the arguments presented here concerning the Suoidea. The interrelationships within the Suidae are based on information in several studies [32, 67, 88, 89]. Note that only a couple of extinct suid subfamilies are shown, and that only extant genera of Suinae are shown. Thick, medium-thick and thin lines represent family or above, subfamily and genera, respectively.

..................................................

Figure 5 Phylogenetic tree for the 18 vertebrate aromatase genes. Numbers above the branches represent the KA/Ks ratios, while numbers below indicate branches highlighted in Figure 6. Single and double asterisks represent bootstrap values of 95–99% and 100%, respectively. The following sequences were used: Tilapia nilotica (rainbow trout), gi:1613859, Oryzias latipes (medaka), gi:1786171, Danio rerio (zebrafish), gi:2306966, Carassius auratus (goldfish, ovary), gi:2662330, Ictalurus punctatus (catfish), gi:912802, Carassius auratus (goldfish, brain), gi:2662328, Sus scrofa (pig) placental, isoform 2, gi:1762232, Sus scrofa (pig) embryo, isoform 3, gi:1244543, Sus scrofa (pig) ovary, isoform 1, gi:1928957, Bos taurus (ox), gi:665546, Equus caballus (horse), gi:2921277, Mus musculus (mouse), gi:3046857, Rattus norvegicus (rat), gi:203804, Oryctolagus cuniculus (rabbit), gi:2493381, Homo sapiens (human), gi:28846, Gallus gallus (chicken), gi:211703, Poephila guttata (zebra finch, ovary), gi:926845, Ovis aries (sheep), gi:7673985.

..................................................

Figure 6 The distribution of amino acid replacements on the tertiary structure of cytochrome P450 homolog. Amino acid replacements occurring along branches highlighted in Figure 5 are shown in red. The substrate binding pocket and nicotinamide co-factor are colored yellow and purple, respectively. The sites that bind the co-reductant are highlighted in green for reference.

..................................................


rating: 1.50 from 4 votes | updated on: 30 Jul 2007 | views: 13330 |

Rate article:







excellent!bad…