Login

Join for Free!
118312 members
table of contents table of contents

This review revisits these early stages of Xenopus development and summarizes the …


Biology Articles » Developmental Biology » Animal Development » Patterning the early Xenopus embryo » References

References
- Patterning the early Xenopus embryo

Afouda, B. A., Ciau-Uitz, A. and Patient, R. (2005). GATA4, 5 and 6 mediate TGFbeta maintenance of endodermal gene expression in Xenopus embryos. Development 132,763 -774.

Agius, E., Oelgeschlager, M., Wessely, O., Kemp, C. and De Robertis, E. M. (2000). Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127,1173 -1183.

Amaya, E., Musci, T. J. and Kirschner, M. W. (1991). Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66,257 -270.

Birsoy, B., Kofron, M., Schaible, K., Wylie, C. and Heasman, J. (2006). Vg1 is an essential signaling molecule in Xenopus development. Development 133, 15-20.

Branford, W. W. and Yost, H. J. (2002). Lefty-dependent inhibition of Nodal- and Wnt-responsive organizer gene expression is essential for normal gastrulation. Curr. Biol. 12,2136 -2141.

Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. and Kimelman, D. (1997). A beta-catenin/Xtcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11,2359 -2370.

Cao, Y., Knochel, S., Oswald, F., Donow, C., Zhao, H. and Knochel, W. (2006). XBP1 forms a regulatory loop with BMP-4 and suppresses mesodermal and neural differentiation in Xenopus embryos. Mech. Dev. 123,84 -96.

Casey, E. S., Tada, M., Fairclough, L., Wylie, C. C., Heasman, J. and Smith, J. C. (1999). Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development. Development 126,4193 -4200.

Cha, S. W., Hwang, Y. S., Chae, J. P., Lee, S. Y., Lee, H. S., Daar, I., Park, M. J. and Kim, J. (2004). Inhibition of FGF signaling causes expansion of the endoderm in Xenopus. Biochem. Biophys. Res. Commun. 315,100 -106.

Chalmers, A. D., Welchman, D. and Papalopulu, N. (2002). Intrinsic differences between the superficial and deep layers of the Xenopus ectoderm control primary neuronal differentiation. Dev. Cell 2,171 -182.

Christen, B. and Slack, J. M. (1997). FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev. Biol. 192,455 -466.

Conlon, F. L., Sedgwick, S. G., Weston, K. M. and Smith, J. C. (1996). Inhibition of Xbra transcription activation causes defects in mesodermal patterning and reveals autoregulation of Xbra in dorsal mesoderm. Development 122,2427 -2435.

Contakos, S. P., Gaydos, C. M., Pfeil, E. C. and McLaughlin, K. A. (2005). Subdividing the embryo: a role for Notch signaling during germ layer patterning in Xenopus laevis. Dev. Biol. 288,294 -307.

Cordenonsi, M., Dupont, S., Maretto, S., Insinga, A., Imbriano, C. and Piccolo, S. (2003). Links between tumor suppressors: p53 is required for TGF-beta gene responses by cooperating with Smads. Cell 113,301 -314.

Dale, L. and Slack, J. M. (1987). Fate map for the 32-cell stage of Xenopus laevis. Development 99,527 -551.

De Robertis, E. M. and Kuroda, H. (2004). Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20,285 -308.

Delaune, E., Lemaire, P. and Kodjabachian, L. (2005). Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132,299 -310.

Dupont, S., Zacchigna, L., Cordenonsi, M., Soligo, S., Adorno, M., Rugge, M. and Piccolo, S. (2005). Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell 121,87 -99.

Faure, S., Lee, M. A., Keller, T., ten Dijke, P. and Whitman, M. (2000). Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 127,2917 -2931.

Fisher, M. E., Isaacs, H. V. and Pownall, M. E. (2002). eFGF is required for activation of XmyoD expression in the myogenic cell lineage of Xenopus laevis. Development 129,1307 -1315.

Fukumoto, T., Kema, I. P. and Levin, M. (2005). Serotonin signaling is a very early step in patterning of the left-right axis in chick and frog embryos. Curr. Biol. 15,794 -803.

Gamer, L. W. and Wright, C. V. (1995). Autonomous endodermal determination in Xenopus: regulation of expression of the pancreatic gene XlHbox 8. Dev. Biol. 171,240 -251.

Godsave, S. F. and Durston, A. J. (1997). Neural induction and patterning in embryos deficient in FGF signaling. Int. J. Dev. Biol. 41,57 -65.

Grammer, T. C., Khokha, M. K., Lane, M. A., Lam, K. and Harland, R. M. (2005). Identification of mutants in inbred Xenopus tropicalis. Mech. Dev. 122,263 -272.

Habas, R., Dawid, I. B. and He, X. (2003). Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 17,295 -309.

Habas, R., Kato, Y. and He, X. (2001). Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107,843 -854.

Heasman, J., Wylie, C. C., Hausen, P. and Smith, J. C. (1984). Fates and states of determination of single vegetal pole blastomeres of X. laevis. Cell 37,185 -194.

Heasman, J., Crawford, A., Goldstone, K., Garner-Hamrick, P., Gumbiner, B., McCrea, P., Kintner, C., Noro, C. Y. and Wylie, C. (1994). Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79,791 -803.

Heasman, J., Kofron, M. and Wylie, C. (2000). Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev. Biol. 222,124 -134.

Heasman, J., Wessely, O., Langland, R., Craig, E. J. and Kessler, D. S. (2001). Vegetal localization of maternal mRNAs is disrupted by VegT depletion. Dev. Biol. 240,377 -386.

Henry, G. L., Brivanlou, I. H., Kessler, D. S., Hemmati-Brivanlou, A. and Melton, D. A. (1996). TGF-beta signals and a pattern in Xenopus laevis endodermal development. Development 122,1007 -1015.

Hilton, E., Rex, M. and Old, R. (2003). VegT activation of the early zygotic gene Xnr5 requires lifting of Tcf-mediated repression in the Xenopus blastula. Mech. Dev. 120,1127 -1138.

Holwill, S., Heaseman, J., Crawley, C. R. and Wylie, C. (1987). Axis and germline deficiences caused by UV irradiation of Xenopus oocytes cultured in vitro. Development 100,735 -743.

Horb, M. E. and Slack, J. M. (2001). Endoderm specification and differentiation in Xenopus embryos. Dev. Biol. 236,330 -343.

Houston, D. W. and Wylie, C. (2005). Maternal Xenopus Zic2 negatively regulates Nodal-related gene expression during anteroposterior patterning. Development 132,4845 -4855.

Houston, D. W., Zhang, J., Maines, J. Z., Wasserman, S. A. and King, M. L. (1998). A Xenopus DAZ-like gene encodes an RNA component of germ plasm and is a functional homologue of Drosophila boule. Development 125,171 -180.

Houston, D. W., Kofron, M., Resnik, E., Langland, R., Destree, O., Wylie, C. and Heasman, J. (2002). Repression of organizer genes in dorsal and ventral Xenopus cells mediated by maternal Xtcf3. Development 129,4015 -4025.

Hukriede, N. A., Tsang, T. E., Habas, R., Khoo, P. L., Steiner, K., Weeks, D. L., Tam, P. P. and Dawid, I. B. (2003). Conserved requirement of Lim1 function for cell movements during gastrulation. Dev. Cell 4,83 -94.

Isaacs, H. V., Pownall, M. E. and Slack, J. M. (1998). Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue XCad3. EMBO J. 17,3413 -3427.

Itoh, K., Brott, B. K., Bae, G. U., Ratcliffe, M. J. and Sokol, S. Y. (2005). Nuclear localization is required for Dishevelled function in Wnt/beta-catenin signaling. J. Biol. 4,3.

Jallow, Z., Jacobi, U. G., Weeks, D. L., Dawid, I. B. and Veenstra, G. J. (2004). Specialized and redundant roles of TBP and a vertebrate-specific TBP paralog in embryonic gene regulation in Xenopus. Proc. Natl. Acad. Sci. USA 101,13525 -13530.

Kazanskaya, O., Glinka, A. and Niehrs, C. (2000). The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning. Development 127,4981 -4992.

Keller, R. E. (1975). Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer. Dev. Biol. 42,222 -241.

Khokha, M. K., Yeh, J., Grammer, T. C. and Harland, R. M. (2005). Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures. Dev. Cell 8,401 -411.

Kim, S. W., Park, J. I., Spring, C. M., Sater, A. K., Ji, H., Otchere, A. A., Daniel, J. M. and McCrea, P. D. (2004). Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin. Nat. Cell Biol. 6,1212 -1220.

Kishi, M., Mizuseki, K., Sasai, N., Yamazaki, H., Shiota, K., Nakanishi, S. and Sasai, Y. (2000). Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm. Development 127,791 -800.

Kloc, M. and Etkin, L. D. (1994). Delocalization of Vg1 mRNA from the vegetal cortex in Xenopus oocytes after destruction of Xlsirt RNA. Science 265,1101 -1103.

Kloc, M., Wilk, K., Vargas, D., Shirato, Y., Bilinski, S. and Etkin, L. D. (2005). Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes. Development 132,3445 -3457.

Kofron, M., Demel, T., Xanthos, J., Lohr, J., Sun, B., Sive, H., Osada, S., Wright, C., Wylie, C. and Heasman, J. (1999). Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 126,5759 -5770.

Kofron, M., Klein, P., Zhang, F., Houston, D. W., Schaible, K., Wylie, C. and Heasman, J. (2001). The role of maternal axin in patterning the Xenopus embryo. Dev. Biol. 237,183 -201.

Kofron, M., Puck, H., Standley, H., Wylie, C., Old, R., Whitman, M. and Heasman, J. (2004a). New roles for FoxH1 in patterning the early embryo. Development 131,5065 -5078.

Kofron, M., Wylie, C. and Heasman, J. (2004b). The role of Mixer in patterning the early Xenopus embryo. Development 131,2431 -2441.

Koide, T., Umesono, K. and Hashimoto, C. (2002). When does the anterior endomesderm meet the anterior-most neuroectoderm during Xenopus gastrulation? Int. J. Dev. Biol. 46,777 -783.

Ku, M. and Melton, D. A. (1993). Xwnt-11: a maternally expressed Xenopus wnt gene. Development 119,1161 -1173.

Kuroda, H., Wessely, O. and De Robertis, E. M. (2004). Neural induction in Xenopus: requirement for ectodermal and endomesodermal signals via Chordin, Noggin, beta-Catenin, and Cerberus. PLoS Biol. 2,E92.

Kuroda, H., Fuentealba, L., Ikeda, A., Reversade, B. and De Robertis, E. M. (2005). Default neural induction: neuralization of dissociated Xenopus cells is mediated by Ras/MAPK activation. Genes Dev. 19,1022 -1027.

Kurth, T. (2005). A cell cycle arrest is necessary for bottle cell formation in the early Xenopus gastrula: Integrating cell shape change, local mitotic control and mesodermal patterning. Mech. Dev. 122,1251 -1265.

Kusakabe, M. and Nishida, E. (2004). The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC. EMBO J. 23,4190 -4201.

Kwan, K. M. and Kirschner, M. W. (2003). Xbra functions as a switch between cell migration and convergent extension in the Xenopus gastrula. Development 130,1961 -1972.

Lane, M. C. and Sheets, M. D. (2000). Designation of the anterior/posterior axis in pregastrula Xenopus laevis. Dev. Biol. 225,37 -58.

Larabell, C. A., Torres, M., Rowning, B. A., Yost, C., Miller, J. R., Wu, M., Kimelman, D. and Moon, R. T. (1997). Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway. J. Cell Biol. 136,1123 -1136.

Latinkic, B. V. and Smith, J. C. (1999). Goosecoid and mix.1 repress Brachyury expression and are required for head formation in Xenopus. Development 126,1769 -1779.

Lee, H. X., Ambrosio, A. L., Reversade, B. and De Robertis, E. M. (2006). Embryonic dorsal-ventral signaling: secreted frizzled-related proteins as inhibitors of tolloid proteinases. Cell 124,147 -159.

Lee, M. A., Heasman, J. and Whitman, M. (2001). Timing of endogenous activin-like signals and regional specification of the Xenopus embryo. Development 128,2939 -2952.

Lerchner, W., Latinkic, B. V., Remacle, J. E., Huylebroeck, D. and Smith, J. C. (2000). Region-specific activation of the Xenopus brachyury promoter involves active repression in ectoderm and endoderm: a study using transgenic frog embryos. Development 127,2729 -2739.

Machado, R. J., Moore, W., Hames, R., Houliston, E., Chang, P., King, M. L. and Woodland, H. R. (2005). Xenopus Xpat protein is a major component of germ plasm and may function in its organisation and positioning. Dev. Biol. 287,289 -300.

Marom, K., Levy, V., Pillemer, G. and Fainsod, A. (2005). Temporal analysis of the early BMP functions identifies distinct anti-organizer and mesoderm patterning phases. Dev. Biol. 282,442 -454.

McNulty, C. L., Peres, J. N., Bardine, N., van den Akker, W. M. and Durston, A. J. (2005). Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and neural crest defects. Development 132,2861 -2871.

Meehan, R. R., Dunican, D. S., Ruzov, A. and Pennings, S. (2005). Epigenetic silencing in embryogenesis. Exp. Cell Res. 309,241 -249.

Miller, J. R., Rowning, B. A., Larabell, C. A., Yang-Snyder, J. A., Bates, R. L. and Moon, R. T. (1999). Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol. 146,427 -437.

Moody, S. A. (2000). Cell lineage analysis in Xenopus embryos. Methods Mol. Biol. 135,331 -347.

Murakami, M. S., Moody, S. A., Daar, I. O. and Morrison, D. K. (2004). Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation. Development 131,571 -580.

Nagel, M., Tahinci, E., Symes, K. and Winklbauer, R. (2004). Guidance of mesoderm cell migration in the Xenopus gastrula requires PDGF signaling. Development 131,2727 -2736.

Ninomiya, H., Elinson, R. P. and Winklbauer, R. (2004). Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning. Nature 430,364 -367.

Nitta, K. R., Tanegashima, K., Takahashi, S. and Asashima, M. (2004). XSIP1 is essential for early neural gene expression and neural differentiation by suppression of BMP signaling. Dev. Biol. 275,258 -267.

Ohkawara, B., Yamamoto, T. S., Tada, M. and Ueno, N. (2003). Role of glypican 4 in the regulation of convergent extension movements during gastrulation in Xenopus laevis. Development 130,2129 -2138.

Ohkawara, B., Shirakabe, K., Hyodo-Miura, J., Matsuo, R., Ueno, N., Matsumoto, K. and Shibuya, H. (2004). Role of the TAK1-NLK-STAT3 pathway in TGF-beta-mediated mesoderm induction. Genes Dev. 18,381 -386.

Onai, T., Sasai, N., Matsui, M. and Sasai, Y. (2004). Xenopus XsalF: anterior neuroectodermal specification by attenuating cellular responsiveness to Wnt signaling. Dev. Cell 7,95 -106.

Onichtchouk, D., Gawantka, V., Dosch, R., Delius, H., Hirschfeld, K., Blumenstock, C. and Niehrs, C. (1996). The XVent-2 homeobox gene is part of the BMP-4 signalling pathway controlling dorsoventral patterning of Xenopus mesoderm. Development 122,3045 -3053.

Pan, F. C., Chen, Y., Loeber, J., Henningfeld, K. and Pieler, T. (2006). I-SceI meganuclease-mediated transgenesis in Xenopus. Dev. Dyn. 235,247 -252.

Pannese, M., Cagliani, R., Pardini, C. L. and Boncinelli, E. (2000). Xotx1 maternal transcripts are vegetally localized in Xenopus laevis oocytes. Mech. Dev. 90,111 -114.

Papin, C., van Grunsven, L. A., Verschueren, K., Huylebroeck, D. and Smith, J. C. (2002). Dynamic regulation of Brachyury expression in the amphibian embryo by XSIP1. Mech. Dev. 111,37 -46.

Park, J. I., Kim, S. W., Lyons, J. P., Ji, H., Nguyen, T. T., Cho, K., Barton, M. C., Deroo, T., Vleminckx, K., Moon, R. T. et al. (2005). Kaiso/p120-catenin and TCF/beta-catenin complexes coordinately regulate canonical Wnt gene targets. Dev. Cell 8,843 -854.

Piepenburg, O., Grimmer, D., Williams, P. H. and Smith, J. C. (2004). Activin redux: specification of mesodermal pattern in Xenopus by graded concentrations of endogenous activin B. Development 131,4977 -4986.

Reversade, B. and De Robertis, E. M. (2005). Regulation of ADMP and BMP2/4/7 at opposite embryonic poles generates a self-regulating morphogenetic field. Cell 123,1147 -1160.

Reversade, B., Kuroda, H., Lee, H., Mays, A. and De Robertis, E. M. (2005). Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. Development 132,3381 -3392.

Roose, J., Molenaar, M., Peterson, J., Hurenkamp, J., Brantjes, H., Moerer, P., van de Wetering, M., Destree, O. and Clevers, H. (1998). The Xenopus Wnt effector Xtcf-3 interacts with Groucho-related transcriptional repressors. Nature 395,608 -612.

Ruzov, A., Dunican, D. S., Prokhortchouk, A., Pennings, S., Stancheva, I., Prokhortchouk, E. and Meehan, R. R. (2004). Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development 131,6185 -6194.

Ryan, K., Garrett, N., Mitchell, A. and Gurdon, J. B. (1996). Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Cell 87,989 -1000.

Salic, A. N., Kroll, K. L., Evans, L. M. and Kirschner, M. W. (1997). Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124,4739 -4748.

Sasai, Y., Lu, B., Piccolo, S. and De Robertis, E. M. (1996). Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO J. 15,4547 -4555.

Scharf, S. R. and Gerhart, J. C. (1980). Determination of the dorsal-ventral axis in eggs of Xenopus laevis: complete rescue of uv-impaired eggs by oblique orientation before first cleavage. Dev. Biol. 79,181 -198.

Schier, A. F. and Talbot, W. S. (2005). Molecular genetics of axis formation in zebrafish. Annu. Rev. Genet. 39,561 -613.

Schneider, S., Steinbeisser, H., Warga, R. M. and Hausen, P. (1996). Beta-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57,191 -198.

Schohl, A. and Fagotto, F. (2002). Beta-catenin, MAPK and Smad signaling during early Xenopus development. Development 129,37 -52.

Schroeder, K. E., Condic, M. L., Eisenberg, L. M. and Yost, H. J. (1999). Spatially regulated translation in embryos: asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus. Dev. Biol. 214,288 -297.

Seo, S., Richardson, G. A. and Kroll, K. L. (2005). The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 132,105 -115.

Shiotsugu, J., Katsuyama, Y., Arima, K., Baxter, A., Koide, T., Song, J., Chandraratna, R. A. and Blumberg, B. (2004). Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development 131,2653 -2667.

Shook, D. R., Majer, C. and Keller, R. (2004). Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis. Dev. Biol. 270,163 -185.

Siegel, P. M. and Massague, J. (2003). Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat. Rev. Cancer 3,807 -821.

Sivak, J. M., Petersen, L. F. and Amaya, E. (2005). FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation. Dev. Cell 8, 689-701.

Smith, J. C. and Howard, J. E. (1992). Mesoderm-inducing factors and the control of gastrulation. Dev. Suppl. 127-136.

Smith, J. C., Price, B. M., Green, J. B., Weigel, D. and Herrmann, B. G. (1991). Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67,79 -87.

Standley, H. J., Destree, O., Kofron, M., Wylie, C. and Heasman, J. (2006). Maternal Xtcf1 and Xtcf4 have distinct roles in regulating Wnt target genes. Dev. Biol. 289,318 -328.

Stennard, F., Carnac, G. and Gurdon, J. B. (1996). The Xenopus T-box gene, Antipodean, encodes a vegetally localised maternal mRNA and can trigger mesoderm formation. Development 122,4179 -4188.

Stennard, F., Zorn, A. M., Ryan, K., Garrett, N. and Gurdon, J. B. (1999). Differential expression of VegT and Antipodean protein isoforms in Xenopus. Mech. Dev. 86, 87-98.

Sun, B. I., Bush, S. M., Collins-Racie, L. A., LaVallie, E. R., DiBlasio-Smith, E. A., Wolfman, N. M., McCoy, J. M. and Sive, H. L. (1999). derriere: a TGF-beta family member required for posterior development in Xenopus. Development 126,1467 -1482.

Sundaram, N., Tao, Q., Wylie, C. and Heasman, J. (2003). The role of maternal CREB in early embryogenesis of Xenopus laevis. Dev. Biol. 261,337 -352.

Suri, C., Haremaki, T. and Weinstein, D. C. (2005). Xema, a foxi-class gene expressed in the gastrula stage Xenopus ectoderm, is required for the suppression of mesendoderm. Development 132,2733 -2742.

Suzuki, A., Ueno, N. and Hemmati-Brivanlou, A. (1997). Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124,3037 -3044.

Tada, M. and Smith, J. C. (2000). Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127,2227 -2238.

Tannahill, D. and Melton, D. A. (1989). Localized synthesis of the Vg1 protein during early Xenopus development. Development 106,775 -785.

Tao, J., Kuliyev, E., Wang, X., Li, X., Wilanowski, T., Jane, S. M., Mead, P. E. and Cunningham, J. M. (2005a). BMP4-dependent expression of Xenopus Grainyhead-like 1 is essential for epidermal differentiation. Development 132,1021 -1034.

Tao, Q., Yokota, C., Puck, H., Kofron, M., Birsoy, B., Yan, D., Asashima, M., Wylie, C. C., Lin, X. and Heasman, J. (2005b). Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120,857 -871.

Vassetzky, Y., Hair, A. and Mechali, M. (2000). Rearrangement of chromatin domains during development in Xenopus. Genes Dev. 14,1541 -1552.

Vincent, J. P. and Gerhart, J. C. (1987). Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev. Biol. 123,526 -539.

Vonica, A. and Gumbiner, B. M. (2002). Zygotic Wnt activity is required for Brachyury expression in the early Xenopus laevis embryo. Dev. Biol. 250,112 -127.

Wacker, S. A., Jansen, H. J., McNulty, C. L., Houtzager, E. and Durston, A. J. (2004a). Timed interactions between the Hox expressing non-organiser mesoderm and the Spemann organiser generate positional information during vertebrate gastrulation. Dev. Biol. 268,207 -219.

Wacker, S. A., McNulty, C. L. and Durston, A. J. (2004b). The initiation of Hox gene expression in Xenopus laevis is controlled by Brachyury and BMP-4. Dev. Biol. 266,123 -137.

Weaver, C., Farr, G. H., 3rd, Pan, W., Rowning, B. A., Wang, J., Mao, J., Wu, D., Li, L., Larabell, C. A. and Kimelman, D. (2003). GBP binds kinesin light chain and translocates during cortical rotation in Xenopus eggs. Development 130,5425 -5436.

Weeks, D. L. and Melton, D. A. (1987). A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-beta. Cell 51,861 -867.

Wessely, O. and De Robertis, E. M. (2000). The Xenopus homologue of Bicaudal-C is a localized maternal mRNA that can induce endoderm formation. Development 127,2053 -2062.

White, R. J., Sun, B. I., Sive, H. L. and Smith, J. C. (2002). Direct and indirect regulation of derriere, a Xenopus mesoderm-inducing factor, by VegT. Development 129,4867 -4876.

Williams, P. H., Hagemann, A., Gonzalez-Gaitan, M. and Smith, J. C. (2004). Visualizing long-range movement of the morphogen Xnr2 in the Xenopus embryo. Curr. Biol. 14,1916 -1923.

Winklbauer, R. and Schurfeld, M. (1999). Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus. Development 126,3703 -3713.

Wylie, C., Kofron, M., Payne, C., Anderson, R., Hosobuchi, M., Joseph, E. and Heasman, J. (1996). Maternal beta-catenin establishes a `dorsal signal' in early Xenopus embryos. Development 122,2987 -2996.

Xanthos, J. B., Kofron, M., Wylie, C. and Heasman, J. (2001). Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 128,167 -180.

Xanthos, J. B., Kofron, M., Tao, Q., Schaible, K., Wylie, C. and Heasman, J. (2002). The roles of three signaling pathways in the formation and function of the Spemann Organizer. Development 129,4027 -4043.

Yamamoto, S., Hikasa, H., Ono, H. and Taira, M. (2003). Molecular link in the sequential induction of the Spemann organizer: direct activation of the cerberus gene by Xlim-1, Xotx2, Mix.1, and Siamois, immediately downstream from Nodal and Wnt signaling. Dev. Biol. 257,190 -204.

Yang, J., Tan, C., Darken, R. S., Wilson, P. A. and Klein, P. S. (2002). Beta-catenin/Tcf-regulated transcription prior to the midblastula transition. Development 129,5743 -5752.

Yao, J. and Kessler, D. S. (2001). Goosecoid promotes head organizer activity by direct repression of Xwnt8 in Spemann's organizer. Development 128,2975 -2987.

Yokota, C., Kofron, M., Zuck, M., Houston, D. W., Isaacs, H., Asashima, M., Wylie, C. C. and Heasman, J. (2003). A novel role for a nodal-related protein; Xnr3 regulates convergent extension movements via the FGF receptor. Development 130,2199 -2212.

Yost, C., Farr, G. H., 3rd, Pierce, S. B., Ferkey, D. M., Chen, M. M. and Kimelman, D. (1998). GBP, an inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93,1031 -1041.

Zhang, C., Basta, T., Jensen, E. D. and Klymkowsky, M. W. (2003). The beta-catenin/VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. Development 130,5609 -5624.

Zhang, J. and King, M. L. (1996). Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning. Development 122,4119 -4129.

Zhang, J., Houston, D. W., King, M. L., Payne, C., Wylie, C. and Heasman, J. (1998). The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94,515 -524.

Zhou, Y. and King, M. L. (2004). Sending RNAs into the future: RNA localization and germ cell fate. IUBMB Life 56,19 -27.



rating: 4.67 from 12 votes | updated on: 23 Oct 2006 | views: 38869 |

Rate article:







excellent!bad…