Login

Join for Free!
118317 members
table of contents table of contents

The medical specialities chosen by doctors for their careers play an important …


Biology Articles » Careers » Mapping medical careers » Results

Results
- Mapping medical careers

We consider firstly the general population sample since it both validates the method which we will subsequently use for the medical student samples, and also helps calibrate the axes.

The general population sample

The questionnaire was completed by 1044 subjects, 49.2% of whom were male, and 46% aged over 42. Multidimensional scaling used the INDSCAL method, with the four groups comprising older and younger males and older and younger females. The stress plot indicated that there were two major underlying dimensions in the data, as Holland's typology would suggest (see also Prediger [53,35]). The locations of the different careers are shown in figure 2. There is good evidence for Holland's RIASEC typology, and the letters R, I, A, S, E and C have been placed on the graph to clarify interpretation. Pilot and Engineer are typical of Realistic careers, Biologist of Investigative careers, Artist and Museum Curator of Artistic careers, Social Worker, Counsellor and Teacher of Social careers, Personnel Director and Lawyer of Enterprising careers, and Accountant and Computer Programmer of Conventional careers. For this non-medical group of subjects, the four medical careers are all placed in the top half of the figure, with surgeon and anaesthetist closest to Investigative, and Psychiatrist closest to Social.

Figure 2. INDSCAL group space of the career preferences expressed by the general population sample. The locations of the labels R, I, A, S, E and C are approximate and are only for guidance and orientation. The four medical specialities are shown in blue so that they are more visible.

Of some importance, given the arbitrariness of the Holland hexagon to rotation in conventional MDS, is that the INDSCAL analysis clearly sets one axis as running from R to S, with the other axis orthogonal to that, running from I and A to C and E. These are similar to the Things-People and Ideas-Data dimensions shown in figure 1.

The medical student samples

Sample sizes for the medical student studies were 1135, 2032 and 2973 for the students in the 1981, 1986 and 1991 cohorts (and these samples consisted of all applicants in the 1981 and 1986 cohorts, and all entrants in the 1991 cohort), and were 330, 376 and 1437 for the final-year students in the 1981, 1986 and 1991 cohort studies. The INDSCAL analyses were restricted to those subjects for whom complete career information was available; this consisted of 538 applicants and 312 final-year students in the 1981 cohort, 1118 applicants and 301 final-year students in the 1986 cohort, and 1638 entrants and 1437 final-year students in the 1991 cohort. See 1 for details of the breakdown of samples by sex and maturity.

The dimensionality of the medical student samples was assessed by carrying out a standard multi-dimensional scaling analysis (i.e. MDS, not INDSCAL), separately for the combined applicant data and the combined final-year data from the three cohorts. The stress formula attempts to quantify the discrepancies between the fitted distances in the model and the observed dissimilarities among the career ratings, with larger values indicating poorer fit. It is obviously the case that the more dimensions are extracted, the better the fit of the model and, hence, the lower the stress value. However, it is also the case that a greater number of dimensions complicates interpretation and may lead to overfitted and unstable solutions. The stress levels with 1,2,3,4,5, and 6 dimensions were .352, .174, .112, .077, .059 and .048 for applicants, and .390, .174, .112, .082, .064 and .052 for final-year students. For the final-year students, it is clear that two dimensions are necessary, and that there is little advantage of adding extra dimensions. The applicant data are slightly less clear and although there is still no doubt that at least two dimensions are necessary there is a suggestion that a third dimension may be of value. Subsequent scrutiny of models with three dimensions suggested that the third dimension was contributed almost entirely by one or two specialities such as forensic medicine, which have a high public and media profile, but which form only a small proportion of medical personnel. It was, therefore, felt to be safe to extract two dimensions, particularly since Holland's typology provided an a priori expectation that there would be two dimensions.

INDSCAL analyses

Separate analyses were carried out for the applicant and final-year data in each of the three cohorts. In each case, data were broken down into sub-groups according to sex (male-female) and age (mature at entry to medical school, i.e. >21 yrs old; or typical post-school entry, at ≤ 21 years old). INDSCAL analyses can clarify the underlying dimensions within data as long as the sub-groups are likely to vary along those dimensions. It should be noted that many studies have found sex differences in medical career interest (e.g. [54]), and younger students are also likely to have different attitudes towards careers than their non-mature counter-parts [55].

Figures 3,4 and 5 show the group plots of the different specialities in applicants to medical school, and figures 6, 7 and 8 show the group plots for the specialities in final-year medical students. In order to help interpret these plots, and for reasons which will become clearer later, we have joined together the data points for Surgery, Hospital Medicine, Psychiatry, Public Health, Administrative Medicine and Laboratory Medicine. For the applicants, it is now clear that these specialities are arranged approximately in the form of a hexagon, with Surgery at the extreme left and Administrative Medicine at the bottom right-hand corner. The pattern shown in the final-year students is similar, Surgery still being at the left-hand side, and Administrative Medicine at the bottom right. Although there are some minor differences between the three cohorts, the broad picture is of overall similarity in the structure of the maps.

Figure 3. The INDSCAL group space for the medical specialities for the applicants in the 1981 cohort. For abbreviations see the Abbreviations section.

Figure 4. The INDSCAL group space for the medical specialities for the applicants in the 1986 cohort. For abbreviations see the Abbreviations section.

Figure 5. The INDSCAL group space for the medical specialities for the entrants in the 1991 cohort. For abbreviations see the Abbreviations section.

Figure 6. The INDSCAL group space for the medical specialities for the final-year medical students in the 1981 cohort. For abbreviations see the Abbreviations section.

Figure 7. The INDSCAL group space for the medical specialities for the final-year medical students in the 1986 cohort. For abbreviations see the Abbreviations section.

Figure 8. The INDSCAL group space for the medical specialities for the final-year medical students in the 1991 cohort. For abbreviations see the Abbreviations section.

The maps shown in figures 3 to 8 are, in INDSCAL terminology, group spaces [44,45]. They are, however, composed of several different sources, broken down by age and sex. Maps can also be produced of 'source space' which shows how the groups differ in their relative weighting of the two extracted dimensions. Figure 9 shows the source spaces for the applicant and final-year student data in the three cohorts. The vertical axis represents the relative importance of the Things-People dimension, whereas the horizontal dimension shows the importance of the Data-Ideas dimension. It should be noted that these axes do not mean that, say, People are more important than Things, but that the Things-People dimension is more differentiated than the Data-Ideas dimension (just as, say, in a map of Italy or Chile, there is far more north-south differentiation than east-west, as they are long-thin countries). In each of the six analyses, the male subjects put more emphasis on the Things-People dimension whereas the female subjects put more emphasis upon the Data-Ideas dimension (and hence the male subjects tend to be in the top left corner and the female subjects in the bottom-right). In the 1981 cohort there is also a suggestion that younger subjects put more emphasis on the Things-People dimension, and older subjects on the Data-Ideas dimension for differentiating careers, but the effect is smaller in the 1986 cohort, and barely visible in the 1991 cohort, suggesting a possible change in the way these groups perceive medical careers. In interpreting these analyses it should be noted that although the absolute size of the various groups was more than adequate for the INDSCAL analyses, the group weights for the mature candidates (male and female) in the 1981 and 1986 finalyear data were based on very small samples, ranging between 5 and 17 participants, and may, therefore, be somewhat unstable.

Figure 9. INDSCAL source spaces for the applicants/entrants and final-year medical students in the 1981, 1986 and 1991 cohorts. Square symbols are for male subjects and circles for female subjects. Solid symbols are for younger students, whereas hatched symbols are for mature students. To help visualisation, the solid arrows connect from younger males to younger females, whereas dashed arrows connect from mature males to mature females. See text for further details of interpretation.


rating: 5.00 from 1 votes | updated on: 29 Dec 2007 | views: 6965 |

Rate article:







excellent!bad…