Join for Free!
122502 members

table of contents table of contents

Hyperspectral crop reflectance data are useful for several remote sensing applications in …

Home » Biology Articles » Agriculture » Hyperspectral field reflectance measurements to estimate wheat grain yield and plant height » References

- Hyperspectral field reflectance measurements to estimate wheat grain yield and plant height

ANALYTICAL SPECTRAL DEVICE INC. FieldSpec® FR Portable Spectroradiometer. 2003. Available in: www.asdi.com/asdi_t2_pr_sp_fsp.html>. Accesseed at: Feb. 14, 2003.

ASRAR, G.; FUCHS, M.; KANEMASU, E.T.; HATFIELD, J.L. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal, v.76, p.300-306, 1984. 

BROGE, N.H.; LEBLANC, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, v.76, p.156-172, 2001. 

CARNEIRO, L.M.T.A.; BIAGI, J.D.; FREITAS, J.G.; CARNEIRO, M.C.; FELÍCIO, J.C. Diferentes épocas de colheita, secagem e armazenamento na qualidade de grãos de trigo comum e duro. Bragantia, v.64, p.127-137, 2005.

CHEN Z.; ELVIDGE, C.D.; GROENEVELD, D.P. Monitoring seasonal dynamics of arid land vegetation using AVIRIS data. Remote Sensing of the Environment, v.65, p.255-266, 1998.

DEMETRIADES-SHAH, T.; STEVEN, M.D.; CLARK, J.A. High resolution derivative spectra in remote sensing. Remote Sensing of Environment, v.33, p.55-64, 1990.

EARTH OBSERVATION-1. User Guide v. 2.3. Cincinnati: University of Cincinnati, 2003.

EARTH OBSERVATION SATELLITE COMPANY. User's guide for Landsat thematic mapper computer-compatible tapes. Cincinnati: Earth Observation Satellite Company, 1985.

ELVIDGE, C.D.; CHEN, Z. Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, v.54, p.35-48, 1995.

GATES, D.M.; KEEGAN, J.H.; SCHLETER, J.C.; WEIDNER, V.R. Spectral properties of plants. Applied Optics, v.4, p.11-20, 1965.

HUETE, A.R. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, v.25, p.295-309, 1988.

JORDAN, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology, v.50, p.663-666, 1969. 

MATLAB-MATHWORKS. MATLAB 6.5 R13. Boston: MathWorks, 2002. (Software). 

MOREIRA, M.A.; ANGULO FILHO, R.; RUDORFF, B.F.T. Radiation use efficiency and harvest index for wheat under drought stress at different growth stages. Scientia Agricola, v.56, p.597-603, 1999.

MOREIRA, M.A.; RUDORFF, B.F.T.; FELICIO, J.C.; FREITAS, J.G.; TARGA, M.S. Variação espectral e eficiência do uso da radiação fotossinteticamente ativa em ensaio com genótipos de trigo. Bragantia, v.64, p.331-338, 2005.

MYNENI, R.B.; MAGGION, S.; IAQUINTA, J.; PRIVETTE, J.L.; GOBRON, N.; PINTY, B.; KIMES, D.S.; VERSTRAETE, M.M.; WILLAMS, D.L. Optical remote sensing of vegetation: modeling, caveats, and algorithms. Remote Sensing of Environment, v.51, p.169-188, 1995.

ROUSE JR., J.W.; HAAS, R.H.; DEERING, D.W.; SCHELL, J.A.; HARLAN, J.C. Monitoring the vernal advancement and retrogration (green wave effect) of natural vegetation. Greenbelt: NASA, 1974. 371p. (NASA/GSFC type III final report).

SAS INSTITUTE. SAS/STAT users guide and software. Release 6.12. Cary: SAS Institute Inc, 1997.

THENKABAIL, P.S.; SMITH, R.B.; DE-PAUW, E. Hyperspectral vegetation indices for determining agricultural crop characteristics. Remote Sensing of the Environment, v.71, p.158-182, 2000.

THENKABAIL P.S.; ENCLONA E.A.; ASHTON M.S.; VAN DER MEER B. Accuracy assessments of hyperspectral waveband performance for vegetation analysis. Remote Sensing of Environment, v.91, p.354-376, 2004.

TUCKER, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, v.8, p.127-150, 1979.

TURNER, D.P.; COHEN, W.B.; KENNEDY, R.E.; FASSNACHT, K.S.; BRIGGS, J.M. Relationships between leaf area index and Landsat TM Spectral Vegetation Indices across three temperate zone sites. Remote Sensing of Environment, v.70, p.52-68, 1999.

YANG, C.-M.; CHEN, R.-K. Modeling rice growth with hyperspectral reflectance data. Crop Science, v.44, p.1283-1290, 2004.

XAVIER, A.C.; VETTORAZZI, C.A. Monitoring leaf area index at watershed level through NDVI from Landsat-7/ETM+ data. Scientia Agricola, v.61, p.243-252, 2004. Available in: http://www.scielo.br/pdf/sa/v61n3/a01v61n3.pdf>. Accessed in: Jun. 01, 2005.


rating: 0.00 from 0 votes | updated on: 27 Oct 2007 | views: 10810 |

Rate article: