Join for Free!
122512 members

Home » Biology Articles » Biomathematics » Found: An Underlying Pattern

Found: An Underlying Pattern

Published by Biology-Online.org on March 29, 2009


Mathematics, statistics and computational methods are some of the key tools used by bioinformatics scientists to unlock patterns in large datasets. This is a bit like picking up a spanner and expecting to be able to change a flat tyre. A spanner might help, but unless you know how the tyre fits in with the car, or indeed what the spanner is capable of, then the act is fruitless.

The realm of philosophy has been much maligned by science. Philosophers get accused of navel gazing, while real scientists’ get on with the hard work of empirical investigation. Empirical facts slowly reveal the true nature of the phenomenon under investigation. On a day-to-day basis science is a slow affair, but over the past 200 years much has been revealed by this tried-and-true approach. 

The Periodic Table of Elements was derived by understanding the empirical properties of discovered elements and identifying common patterns. The result: an abstract categorisation of the elements that has stood the test of time. But still, there is no theoretical logic to guide us as to how many elements there might be or, indeed, why electrons are organised the way they are. Mathematical descriptions are not logical explanations. The elements are fundamental components that constitute everything within the universe. Unless we can understand why they are structured the way they are, moving forward would seem destined to remain a slow affair.

The structure of the double helix was derived by understanding a range of empirical evidence: the chemistry of the nitrogenous bases, the way the nitrogenous bases bond, Chargraff’s data on the quantity of the bases, and Franklin and Wilkins X-ray images of DNA. The result: an abstract description that led to empirical evidence to confirm the B-form of helix that has stood the test of time. A giant leap in biology ensued, and a great deal has been uncovered about the many forms of life of earth. However, biology appears to be at a standstill relying on bioinformatics that resembles the process of trying to find a needle in the haystack.

A fundamental question that could release the floodgates remains unanswered: What is the underlying theoretical logic for the features of DNA? And, if there is an underlying logic, does it have any relationship with the fundamental elements and can such a theory provide any value to understanding the codons? With only 64 codons making 20 amino acids, a number of scientists believe that there must be some underlying logic to these empirical facts. 

The hierarchy of living things has been subject to many taxonomic arguments. Every time new empirical evidence emerges, taxonomies must be revised. The Periodic Table has been subjected to this on-off process. New discoveries require alterations to the categorisation, then the abstract categorisation remains stable for a while, but new evidence emerges and the categories get altered again, and on we go.  While the Periodic Table is relatively stable today, discoveries of new elements may yet give rise to a change in its shape.

What is missing from modern science today is the use of theory. Trial-and-error science will not yield a paradigm shift. Mendeleyev constructed a theoretical description of the relationship between the elements based on a theory of periodicity. Watson and Crick built a theoretical model for DNA that empirical evidence proved accurate. But, there appears to be no one searching for a theoretical link between the elements (a single molecule) and DNA (a macro-molecule); even though some scientists are searching for the relationship between the nitrogenous bases and their triplicate cousins (the codons).

Recently, Dr Glassop, from Deakin University, Melbourne Australia, has developed a theoretical model that provides an explanation for the underling features of the Periodic Table and the underlying features of the nitrogenous bases (see Glassop 2007). Dr Glassop’s model describes a multi-faceted view of causality that gives rise to a multi-faceted ontological schema. The model is referred to as the Structure-Organisation-Process (SOP) model of change.

Most scientists would stand aghast at the idea that a causal model might be useful to biological science. After all, causality stands accused of having limited relevance to simple chemical systems. And, many have doubts that causality has any relevance at the sub-atomic level. If causality was to have relevance to complex biological life, then we might need to invoke ideas of anthropomorphism; where all forms of life act as we humans do with motivation and purpose.  However, it is tautological to expect a paradigm shift when the current paradigms cannot be challenged!

To suggest that a causal model can explain the structure of a nucleotide base, the organisation of electrons in an atom and the processes of human behaviour might render all things in the universe connected in some way. Although, if the universe itself is considered a system, then, by definition, all things contained within that single system must be connected! It is the job of science to reveal these connections.

Dr Glassop’s (2007) view of the Periodic Table claims that there are eight periods in a theoretical model (not seven), the second period is left vacant (because of certain violations), the orbitals, shells, lobes and spin are cumulative features, the numerical representation of the SOP model is reflected in the quantum numbers (of particular interest is the rationale for the lobes) and there is a limit to the number of elements we can expect to discover (118). It is only with a theory of the underlying pattern for the Table that so many ideas can emerge. 

The SOP model confirms recent empirical evidence about the nucleotide bases: cytosine (C) and adenine (A) give rise to the right twist of the helix, while thymine (T) and guanine (G) give rise to the left twist (see Ha et. al. 2005). Of special interest to bioinformatics is the representative numbers provided by the SOP model (C=1, T=7, A=5, G=3). While accusations of numerology have been levelled at Dr Glassop’s work, the 1-7-5-3 order is reflected in the blocks of the Periodic Table according to the number of orbitals (s=1, f=7, d=5, p=3).

The SOP model of change is not a predictive model and there are no algorithms that can find immediacy in bioinformatics, but the theory is novel and does deserve the scrutiny of scientists searching for the next valve that releases the floodgate.



Deakin University, Melbourne, Australia



Ha, S.C., Lowenhaupt, K., Rich, A., Kim, Y. and Kim, K. (2005). Crystal Structure of a Juncture between B–DNA and Z–DNA Reveals Two Extruded Bases. Nature. 437 (20):1183–1186.

Glassop, LI (2007) Rethinking Causality; pattern as the science of change, Heidelberg Press, Melbourne.

rating: 0.00 from 0 votes | updated on: 28 Mar 2009 | views: 3401 |

Rate article: