Login

Join for Free!
118879 members
table of contents table of contents

Flight speed is expected to increase with mass and wing loading among …


Biology Articles » Zoology » Ornithology » Flight Speeds among Bird Species: Allometric and Phylogenetic Effects

Abstract
- Flight Speeds among Bird Species: Allometric and Phylogenetic Effects

Flight Speeds among Bird Species: Allometric and Phylogenetic Effects

 

Thomas Alerstam1*, Mikael Rosén1, Johan Bäckman1, Per G. P. Ericson2, Olof Hellgren1

 

1 Department of Animal Ecology, Lund University, Lund, Sweden, 2 Department of Vertebrate Zoology, Swedish Museum of Natural History, Stockholm, Sweden

 

Flight speed is expected to increase with mass and wing loading among flying animals and aircraft for fundamental aerodynamic reasons. Assuming geometrical and dynamical similarity, cruising flight speed is predicted to vary as (body mass)1/6 and (wing loading)1/2 among bird species. To test these scaling rules and the general importance of mass and wing loading for bird flight speeds, we used tracking radar to measure flapping flight speeds of individuals or flocks of migrating birds visually identified to species as well as their altitude and winds at the altitudes where the birds were flying. Equivalent airspeeds (airspeeds corrected to sea level air density, Ue) of 138 species, ranging 0.01-10 kg in mass, were analysed in relation to biometry and phylogeny. Scaling exponents in relation to mass and wing loading were significantly smaller than predicted (about 0.12 and 0.32, respectively, with similar results for analyses based on species and independent phylogenetic contrasts). These low scaling exponents may be the result of evolutionary restrictions on bird flight-speed range, counteracting too slow flight speeds among species with low wing loading and too fast speeds among species with high wing loading. This compression of speed range is partly attained through geometric differences, with aspect ratio showing a positive relationship with body mass and wing loading, but additional factors are required to fully explain the small scaling exponent of Ue in relation to wing loading. Furthermore, mass and wing loading accounted for only a limited proportion of the variation in Ue. Phylogeny was a powerful factor, in combination with wing loading, to account for the variation in Ue. These results demonstrate that functional flight adaptations and constraints associated with different evolutionary lineages have an important influence on cruising flapping flight speed that goes beyond the general aerodynamic scaling effects of mass and wing loading.

 

An Open Access article from PLoS Biol 5(8): e197, distributed under the terms of the Creative Commons Attribution License.

 



rating: 5.00 from 2 votes | updated on: 11 Jul 2008 | views: 9443 |

Rate article:







excellent!bad…