Login

Join for Free!
119291 members
table of contents table of contents

To set adaptation in a historic frame, fossil records as evidence of …


Biology Articles » Paleobiology » Fantastic animals as an experimental model to teach animal adaptation » Methods

Methods
- Fantastic animals as an experimental model to teach animal adaptation

This project was planned and performed during the years 2005/2006. It has involved professors and students of the School of Specialization for the Secondary Teaching (SSST) of the University of Modena and Reggio Emilia (Modena, Italy), a teacher and students of the Secondary School of First Degree "G. Marconi" (Modena, Italy). The School of Specialization is a two-year course for graduate students wanting to take up a career as teachers in the Italian Secondary School of First Degree (student age 11–14 years). The institutions involved in the project were the University of Modena and Reggio Emilia, the University Museum of Zoology and Comparative Anatomy and the Secondary School of First Degree "G. Marconi".

The project has been developed during the SSST course. The SSST students experienced all the project phases, understanding the impact on the young students of each project phase and of each cooperative learning structure that we used. In this way it was possible to apply a backward designed strategy [29] to review each phase for a better efficiency of the whole project. Then the project was proposed to a teacher of the "G. Marconi" School, who agreed to perform it with her students (aged 13–14). The project was introduced during the optional curriculum of science laboratory, and it was completed in about 30 hours. Students were so enthusiastic about the project that they dedicated time to it beyond the ordinary school's scheduled time.

The experimental project we are presenting can be viewed as a framework, whose phases can either be developed or be reduced in accordance with the available time for the activity and/or with specific topics not explicitly treated in this paper. Imaginary animals created by the students can be also used as a tool within the entire school curriculum. If the student creates an imaginary animal at the beginning of the classes, she/he could add any biological information to this imaginary creature that she/he learns during the science courses. This would allow a recurrence in teaching practice, a kind of spiral curriculum [30] to reinforce and enrich concepts, thus increasing the cognitive conceptual map of students.

The project has the following educational objectives: (a) knowledge the characteristics of living beings (life cycle, morphology, anatomy, physiology), (b) meanings of the term "adaptation" in biology, (c) meaning of fossils and the fossilization processes, (d) definition of ecosystem, and (e) particularity of the different biomes.

At the end of the project, the student should be able to: (a) correlate the main functions of a living being (feeding, respiration, excretion, transport, perception, etc.), (b) know an ecosystem and the factors and conditions for its equilibrium, (c) find the relationships between organisms and their environment, (d) find the relationships among organisms of an ecosystem, (e) understand that to survive and reproduce an organism has to be adapted to its environment, and (f) understand the importance of fossils in the development of evolutionary theories.

Other teaching outcomes of this project are related to formation of student personality. The student activities that we propose require interaction among intelligence, understanding, interpretation, imagination, and creativity. Moreover, students have to (a) interact among themselves and among people from another school world, (b) find common and shared solutions, and (c) live the school as a place of creativity and not just academics.

The objectives of this project are in line with the National Indications of the Italian Ministry of Public Instruction. Specific competencies are required for students: observation of the reality to recognize relationships, modifications, and causal connections; understanding of the typical elements of the natural and anthropic environments; and development of study and research attitudes on natural world [31]. Moreover, this project is useful as an introduction to other required scientific competencies: knowledge of and reflection upon evolution of living beings and Darwinian theories.

The experimental project can be schematized in nine phases (developed and discussed in Results and Conclusions session):

1) Review of previous knowledge (review process).

2) Lesson on fossils (learning process).

3) Lesson on fantastic animals (stimulating process).

4) Planning an imaginary world/environment (creative process).

5) Creation of an imaginary animal adapted to the imaginary world/environment (creative process).

6) Revision and discussion of the imaginary animals (analytical process).

7) Identification and discussion of the adaptations of real animals (synthesis process).

8) Identification and discussion of the adaptations of fossil animals (synthesis process).

9) Public exposition of the experimental project (metacognitive process).

This experience can also be adapted as a good interdisciplinary project that can involve scientific topics such as biology, geology, physics, chemistry, and humanistic topics such as geography, literature, and history. This project can also be adapted for high school students. In this case an inspiring reading could be "The Snouters: Form and Life of the Rhinogrades" [32], in which an imaginary explorer describes, in a scientific way, a series of fantastic creatures, their adaptations, and habitats of islands from which they evolved.

We asked SSST students to create a rubric to evaluate the student's performances of this teaching project. A rubric is a scoring guide to judge the student's work based on the sum of a full range of criteria, rather than a single numerical score [33]. It represents a working guide for the teacher but it can be handed out to students before the assignment begins in order to make them familiar with the criteria on which their work will be judged. In this way students understand how they will be evaluated and can prepare accordingly, enhancing the quality of direct instruction.

This teaching project was presented at the 2nd Meeting of Italian Evolutionary Biologists – 1st ISEB Congress (Florence, Italy, 2006) and it won ex aequo, the prize as best poster of the congress [34].


rating: 4.00 from 2 votes | updated on: 13 Sep 2007 | views: 12013 |

Rate article:







excellent!bad…