Login

Join for Free!
113982 members
table of contents table of contents

The non-invasive nature of laser biostimulation has made lasers an attractive alternative …


Biology Articles » Health and Medicine » Medicine and Diagnosis » Design and testing of low intensity laser biostimulator » Discussion

Discussion
- Design and testing of low intensity laser biostimulator

The best solution for building a compact hand held biostimulator would be to design a custom made integrated circuit, but the cost would be much higher. We found a good alternative in using surface mount technology (SMT), commercially available integrated laser diode driver and a RISC Flash microcontroller. This solution resulted in a reduction in parts, size and power consumption. The proposed method for testing the device efficiency is very sensitive to precise electrode and stimulus positioning. Even a deviation of 3 mm from the exact SLB location may prevent the recording electrode from capturing signals from the source. The same deviation of the stimulus position also results of ineffective excitation of the targeted SLB and thus no SLB evoked potentials can be recorded. The method is also susceptible to the electrode-skin pressure, but not only due to its strong influence on the contact impedance. It was observed that the excessive electrode-skin pressure led to diminishing or even disappearing of the SLB signal, although the contact impedance was lower. This is most probably due to the pressure exerted on the SLB source that may affect the signal generation or transduction. Alternatively insufficient electrode-skin pressure led to excessive contact impedance and noise from the electrode-skin interface. The preliminary results suggest that a circularly polarized laser emission is most effective when used on the so-called Yang acupuncture meridians but not on Yin types. However more studies are needed to validate or disprove this observation.

rating: 0.00 from 0 votes | updated on: 26 Jul 2009 | views: 3694 |

Rate article:







excellent!bad…