Join for Free!
112476 members
table of contents table of contents

Biology Articles » Biotechnology » Biotechnology to improve health in developing countries - A review » Summary

- Biotechnology to improve health in developing countries - A review

This review shows how ten prominent biotechnologies can contribute to improving health in developing countries within the next ten years and can make diverse and significant contributions to the efforts of these countries in improving health and development indicators. Through the provision of simpler and robust diagnostics, new vaccines, safer methods of vaccine and drug delivery, empowerment of women, methods of environmental remediation and other techniques, the benefits of modern technology can reach the developing world. The examples described here indicate how genomics can promote development and reduce poverty, both by improving health and by forming the basis of new industries in developing countries.

Identification of health needs and the role such new technologies can play in addressing them is the first step in the process of harnessing biotechnology for improving health in developing countries. The next step is the implementation of these technologies in the developing world. A number of factors may be responsible for the relative failure of new technologies becoming widely implemented in the South, among them lack of resources, poor scientific capacity and ineffective policies. The challenge now facing us in our quest for greater global health equity is to understand the barriers to implementation of new advances in science and technology in developing countries and to develop mechanisms to break these barriers down. A number of efforts are currently ongoing that can help further our understanding of these mechanisms. The Inter-Academy Council (IAC), created in 2000 to bring together international science academies to discuss the scientific aspects of problems of global concerns, recently put forth a report early in 2004. This report underscores the urgent need to mobilize scientific knowledge to address critical world issues such as poverty, disease, trade and economic transformation. The Millennium Project's Science and Technology Task Force will be presenting its interim report to UN Secretary General Kofi Annan in summer this year. The report identifies four priority areas that require policy decisions: managing technological innovation in a rapidly globalizing world; redefining infrastructure development as a foundation for technological innovation; building human resources in the scientific, technological and engineering sciences through institutions of higher learning; and enhancing private enterprise though the creation and expansion of businesses (including the effective use of intellectual, human, financial and social capital). The contribution of the private sector is highlighted in the report of the UN Commission on Private Sector and Development. The report, titled "Unleashing Entrepreneurship: Making Business Work for the Poor", observes that the process of commercialization for development involves the dissemination and facilitation of knowledge flows between public and private sectors of both developed and developing markets. The report recommends action in both the public and privates spheres, but also emphasizes the linkages between these spheres, recognizing the importance of cooperation and partnerships to achieve goals. Recently, Canadian researchers have proposed an initiative — Canada Science International — to launch Canada as a world leader in developing and applying technological innovations to help solve health and environmental problems in low and middle-income countries in partnership with them. The Canadian government, led by Paul Martin, aims to spend 5% of R&D investments on a knowledge-based approach to development. This provides a rare opportunity both for Canada to leverage its existing investments in S&T innovation to help address the challenges of the developing world, as well as for developing country partners to engage in this innovation process.

All these initiatives point towards strategies for building knowledge economies that foster scientific innovation. The over-arching question raised by both these reports is how a country can build its national system of innovation. A country's national system of innovation (NSI) represents the institutions that contribute to the creation, diffusion, and use of new economically useful knowledge and the linkages and synergies between the institutions (Lundvall 1992). These institutions not only include formal ones like firms, universities, research centers and government, but also institutions in a wider sense, such as social norms and laws. The Canadian Program in Genomics and Global Health is in the process of conducting a novel study of the health biotechnology innovation systems of Brazil, China, Cuba, Egypt, India, South Africa, and South Korea, all of which have relatively active biotechnology industries. It will focus on identifying the main actors in the health biotechnology innovation systems under study, i.e. by examining the roles of government, private firms, R&D system, the education system etc in the health biotechnology innovation process. The study will also explore the extent and patterns of linkages between all the actors in the NSI systems. Where linkages extend beyond national boundaries, information will be collected on the role of international linkages in the development of genomics/health biotechnologies in these countries. The results of this study may yield useful information for developing countries looking to harness the benefits of biotechnology for development.

rating: 6.08 from 26 votes | updated on: 27 Sep 2006 | views: 4973 |

Rate article: