Login

Join for Free!
118895 members
table of contents table of contents

Biology Articles » Anatomy & Physiology » Bile acid interactions with cholangiocytes » References

References
- Bile acid interactions with cholangiocytes

 
1     Strange RC. Hepatic bile flow. Physiol Rev 1984; 64: 1055-1102  
2     Kanai S, Kitani K, Sato Y. The nature of choleresis induced by deoxycholate and its conjugates in the rabbit. Jpn J Physiol 1989; 39: 907-918  
3     Hofmann AF. Current concepts of biliary secretion. Dig Dis Sci 1989; 34: S16-20  
4     Buscher HP, Miltenberger C, MacNelly S, Gerok W. The histoautoradiographic localization of taurocholate in rat liver after bile duct ligation. Evidence for ongoing secretion and reabsorption processes. J Hepatol 1989; 8: 181-191  
5     Alpini G, Glaser SS, Rodgers R, Phinizy JL, Robertson WE, Lasater J, Caligiuri A, Tretjak Z, LeSage GD. Functional expression of the apical Na+-dependent bile acid transporter in large but not small rat cholangiocytes. Gastroenterology 1997; 113: 1734-1740  
6     Lazaridis KN, Tietz P, Wu T, Kip S, Dawson PA, LaRusso NF. Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proc Natl Acad Sci USA 2000; 97: 11092-11097  
7     Alpini G, Ueno Y, Glaser SS, Marzioni M, Phinizy JL, Francis H, Lesage G. Bile acid feeding increased proliferative activity and apical bile acid transporter expression in both small and large rat cholangiocytes. Hepatology 2001; 34: 868-876  
8     Alpini G, Baiocchi L, Glaser S, Ueno Y, Marzioni M, Francis H, Phinizy JL, Angelico M, Lesage G. Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha. Hepatology 2002; 35: 1041-1052  
9     Alpini G, Glaser S, Phinizy JL, Kanno N, Francis H, Ludvik M, and LeSage G.Regulation of cholangiocyte apical bile acid transporter (ABAT) activity by biliary bileacids: different potential compensatory changes for intrahepatic and extrahepaticcholestasis. Gastroenterology 2001; 120: A6  
10   LeSage G, Glaser S, Alpini G. Regulation of cholangiocyte proliferation. Liver 2001; 21: 73-80  
11   Alpini G, Glaser SS, Ueno Y, Rodgers R, Phinizy JL, Francis H, Baiocchi L, Holcomb LA, Caligiuri A, LeSage GD. Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid-regulated ductal secretion. Gastroenterology 1999; 116: 179-186  
12   Alpini G, Glaser S, Robertson W, Phinizy JL, Rodgers RE, Caligiuri A, LeSage G. Bile acids stimulate proliferative and secretory events in large but not small cholangiocytes. Am J Physiol 1997; 273: G518-529  
13   Alpini G, Kanno N, Phinizy JL, Glaser S, Francis H, Taffetani S, LeSage G. Tauroursodeoxycholate inhibits human cholangiocarcinoma growth via Ca2+-, PKC-, and MAPK-dependent pathways. Am J Physiol Gastrointest Liver Physiol 2004; 286: G973-982  
14   Kanno N, LeSage G, Glaser S, Alpini G. Regulation of cholangiocyte bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol 2001; 281: G612-625  
15   Marzioni M, LeSage GD, Glaser S, Patel T, Marienfeld C, Ueno Y, Francis H, Alvaro D, Tadlock L, Benedetti A, Marucci L, Baiocchi L, Phinizy JL, Alpini G. Taurocholate prevents the loss of intrahepatic bile ducts due to vagotomy in bile duct-ligated rats. Am J Physiol Gastrointest Liver Physiol 2003; 284: G837-852  
16   Alpini G, Marucci L, Glaser S, LeSage G. Taurocholate (TC) but not taurolithocholate (TLC) abrogates carbon tetrachloride (CCl4)-induced cholangiocyte apoptosis by a phosphatidylinositol 3-kinase (PI3K)-dependent pathway. Hepatology 1999; 30: A897  
17   Lazaridis KN, Pham L, Tietz P, Marinelli RA, deGroen PC, Levine S, Dawson PA, LaRusso NF. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest 1997; 100: 2714-2721  
18   Jung D, Fried M, Kullak-Ublick GA. Human apical sodium-dependent bile salt transporter gene (SLC10A2) is regulated by the peroxisome proliferator-activated receptor alpha. J Biol Chem 2002; 277: 30559-30566  
19   Marcus SN, Schteingart CD, Marquez ML, Hofmann AF, Xia Y, Steinbach JH, Ton-Nu HT, Lillienau J, Angellotti MA, Schmassmann A. Active absorption of conjugated bile acids in vivo. Kinetic parameters and molecular specificity of the ileal transport system in the rat. Gastroenterology 1991; 100: 212-221  
20   Higgins JV, Paul JM, Dumaswala R, Heubi JE. Downregulation of taurocholate transport by ileal BBM and liver BLM in biliary-diverted rats. Am J Physiol 1994; 267: G501-507  
21   Aldini R, Roda A, Lenzi PL, Ussia G, Vaccari MC, Mazzella G, Festi D, Bazzoli F, Galletti G, Casanova S. Bile acid active and passive ileal transport in the rabbit: effect of luminal stirring. Eur J Clin Invest 1992; 22: 744-750  
22   Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, Dawson PA. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 1998; 274: G157-169  
23   Oelkers P, Kirby LC, Heubi JE, Dawson PA. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest 1997; 99: 1880-1887  
24   Stolz A, Sugiyama Y, Kuhlenkamp J, Osadchey B, Yamada T, Belknap W, Balistreri W, Kaplowitz N. Cytosolic bile acid binding protein in rat liver: radioimmunoassay, molecular forms, developmental characteristics and organ distribution. Hepatology 1986; 6: 433-439  
25   Yamamuro W, Stolz A, Takikawa H, Sugimoto M, Kaplowitz N. Distribution of 3 alpha-hydroxysteroid dehydrogenase (bile acid binder) in rat small intestine: comparison with glutathione S-transferase subunits. J Gastroenterol 1994; 29: 115-119  
26   LeSage G, Hofmann AF. Effect of bile acid hydrophobicity on biliary transit timeand intracellular mobility: A comparison of four fluorescent bile acid analogues. Gastroenterology 1994; 106: A929  
27   Hwang ST, Urizar NL, Moore DD, Henning SJ. Bile acids regulate the ontogenic expression of ileal bile acid binding protein in the rat via the farnesoid X receptor. Gastroenterology 2002; 122: 1483-1492  
28   Benedetti A, Di Sario A, Marucci L, Svegliati-Baroni G, Schteingart CD, Ton-Nu HT, Hofmann AF. Carrier-mediated transport of conjugated bile acids across the basolateral membrane of biliary epithelial cells. Am J Physiol 1997; 272: G1416-1424  
29   Scheffer GL, Kool M, de Haas M, de Vree JM, Pijnenborg AC, Bosman DK, Elferink RP, van der Valk P, Borst P, Scheper RJ. Tissue distribution and induction of human multidrug resistant protein 3. Lab Invest 2002; 82: 193-201  
30   Hirohashi T, Suzuki H, Ito K, Ogawa K, Kume K, Shimizu T, Sugiyama Y. Hepatic expression of multidrug resistance-associated protein-like proteins maintained in eisai hyperbilirubinemic rats. Mol Pharmacol 1998; 53: 1068-1075  
31   Konig J, Rost D, Cui Y, Keppler D. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology 1999; 29: 1156-1163  
32   Ballatori N, Christian WV, Lee JY, Dawson PA, Soroka CJ, Boyer JL, Madejczyk MS, Li N. OSTalpha-OSTbeta: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 2005; 42: 1270-1279  
33   Wang W, Seward DJ, Li L, Boyer JL, Ballatori N. Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc Natl Acad Sci USA 2001; 98: 9431-9436  
34   Gurantz D, Schteingart CD, Hagey LR, Steinbach JH, Grotmol T, Hofmann AF. Hypercholeresis induced by unconjugated bile acid infusion correlates with recovery in bile of unconjugated bile acids. Hepatology 1991; 13: 540-550  
35   Perez Barriocanal F, Marin JJ, Dumont M, Erlinger S. Influence of backward perfusion on ursodeoxycholate-induced choleresis in isolated in situ rat liver. J Hepatol 1990; 11: 165-171  
36   Elsing C, Sagesser H, Reichen J. Ursodeoxycholate-induced hypercholeresis in cirrhotic rats: further evidence for cholehepatic shunting. Hepatology 1994; 20: 1048-1054    
37   Lamri Y, Erlinger S, Dumont M, Roda A, Feldmann G. Immunoperoxidase localization of ursodeoxycholic acid in rat biliary epithelial cells. Evidence for a cholehepatic circulation. Liver 1992; 12: 351-354  
38   Alpini G, Glaser S, Baiocchi L, Francis H, Xia X, Lesage G. Secretin activation of the apical Na+-dependent bile acid transporter is associated with cholehepatic shunting in rats. Hepatology 2005; 41: 1037-1045  
39   Shneider BL, Michaud GA, West AB, Suchy FJ. The effects of bile acid feeding on the development of ileal bile acid transport. Pediatr Res 1993; 33: 221-224  
40   Lee J, Azzaroli F, Wang L, Soroka CJ, Gigliozzi A, Setchell KD, Kramer W, Boyer JL. Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. Gastroenterology 2001; 121: 1473-1484  
41   Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol 2002; 64: 635-661  
42   Shneider BL, Setchell KD, Crossman MW. Fetal and neonatal expression of the apical sodium-dependent bile acid transporter in the rat ileum and kidney. Pediatr Res 1997; 42: 189-194  
43   Christie DM, Dawson PA, Thevananther S, Shneider BL. Comparative analysis of the ontogeny of a sodium-dependent bile acid transporter in rat kidney and ileum. Am J Physiol 1996; 271: G377-385  
44   Chen F, Ma L, Al-Ansari N, Shneider B. The role of AP-1 in the transcriptional regulation of the rat apical sodium-dependent bile acid transporter. J Biol Chem 2001; 276: 38703-38714    
45   Webster CR, Blanch C, Anwer MS. Role of PP2B in cAMP-induced dephosphorylation and translocation of NTCP. Am J Physiol Gastrointest Liver Physiol 2002; 283: G44-50  
46   Sun AQ, Arrese MA, Zeng L, Swaby I, Zhou MM, Suchy FJ. The rat liver Na(+)/bile acid cotransporter. Importance of the cytoplasmic tail to function and plasma membrane targeting. J Biol Chem 2001; 276: 6825-6833   
47   Reymann A, Braun W, Drobik C, Woermann C. Stimulation of bile acid active transport related to increased mucosal cyclic AMP content in rat ileum in vitro. Biochim Biophys Acta 1989; 1011: 158-164  
48   Alpini G, Glaser S, Chowdhury U, Francis H, Kanno N, Phinizy JL, Eisel W, LeSage G. cAMP-dependent translocation of the apical bile acid transporter (ABAT) to the cholangiocyte apical membrane regulates ductal absorption of conjugated bile acids. Hepatology 1999; 30: A1029  
49   Alpini G, Glaser S, Alvaro D, Ueno Y, Marzioni M, Francis H, Baiocchi L, Stati T, Barbaro B, Phinizy JL, Mauldin J, Lesage G. Bile acid depletion and repletion regulate cholangiocyte growth and secretion by a phosphatidylinositol 3-kinase-dependent pathway in rats. Gastroenterology 2002; 123: 1226-1237  
50   Chen F, Ma L, Sartor RB, Li F, Xiong H, Sun AQ, Shneider B. Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation. Gastroenterology 2002; 123: 2005-2016    
51   Skach WR. Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator. Kidney Int 2000; 57: 825-831  
52   Hatakeyama S, Nakayama KI. Ubiquitylation as a quality control system for intracellular proteins. J Biochem (Tokyo) 2003; 134: 1-8  
53   Schwartz DC, Hochstrasser M. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci 2003; 28: 321-328  
54   Alpini G, Glaser S, Robertson W, Rodgers RE, Phinizy JL, Lasater J, LeSage GD. Large but not small intrahepatic bile ducts are involved in secretin-regulated ductal bile secretion. Am J Physiol 1997; 272: G1064-1074  
55   Alpini G, Roberts S, Kuntz SM, Ueno Y, Gubba S, Podila PV, LeSage G, LaRusso NF. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology 1996; 110: 1636-1643  
56   Brady LM, Beno DW, Davis BH. Bile acid stimulation of early growth response gene and mitogen-activated protein kinase is protein kinase C-dependent. Biochem J 1996; 316 (Pt 3): 765-769  
57   Podevin P, Rosmorduc O, Conti F, Calmus Y, Meier PJ, Poupon R. Bile acids modulate the interferon signalling pathway. Hepatology 1999; 29: 1840-1847  
58   Di Toro R, Campana G, Murari G, Spampinato S. Effects of specific bile acids on c-fos messenger RNA levels in human colon carcinoma Caco-2 cells. Eur J Pharm Sci 2000; 11: 291-298    
59   Nathanson MH, Burgstahler AD, Masyuk A, Larusso NF. Stimulation of ATP secretion in the liver by therapeutic bile acids. Biochem J 2001; 358: 1-5  
60   Voronina S, Longbottom R, Sutton R, Petersen OH, Tepikin A. Bile acids induce calcium signals in mouse pancreatic acinar cells: implications for bile-induced pancreatic pathology. J Physiol 2002; 540: 49-55  
61   Marrero I, Sanchez-Bueno A, Cobbold PH, Dixon CJ. Taurolithocholate and taurolithocholate 3-sulphate exert different effects on cytosolic free Ca2+ concentration in rat hepatocytes. Biochem J 1994; 300 (Pt 2): 383-386  
62   Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284: 1365-1368  
63   Kurz AK, Block C, Graf D, Dahl SV, Schliess F, Haussinger D. Phosphoinositide 3-kinase-dependent Ras activation by tauroursodesoxycholate in rat liver. Biochem J 2000; 350 (Pt 1): 207-213  
64   Rao YP, Studer EJ, Stravitz RT, Gupta S, Qiao L, Dent P, Hylemon PB. Activation of the Raf-1/MEK/ERK cascade by bile acids occurs via the epidermal growth factor receptor in primary rat hepatocytes. Hepatology 2002; 35: 307-314  
65   Kurz AK, Graf D, Schmitt M, Vom Dahl S, Haussinger D. Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology 2001; 121: 407-419  
66   Shimokura GH, McGill JM, Schlenker T, Fitz JG. Ursodeoxycholate increases cytosolic calcium concentration and activates Cl- currents in a biliary cell line. Gastroenterology 1995; 109: 965-972  
67   Spirli C, Nathanson MH, Fiorotto R, Duner E, Denson LA, Sanz JM, Di Virgilio F, Okolicsanyi L, Casagrande F, Strazzabosco M. Proinflammatory cytokines inhibit secretion in rat bile duct epithelium. Gastroenterology 2001; 121: 156-169  
68   Yoon JH, Higuchi H, Werneburg NW, Kaufmann SH, Gores GJ. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology 2002; 122: 985-993  
69   Puglielli L, Amigo L, Arrese M, Nunez L, Rigotti A, Garrido J, Gonzalez S, Mingrone G, Greco AV, Accatino L. Protective role of biliary cholesterol and phospholipid lamellae against bile acid-induced cell damage. Gastroenterology 1994; 107: 244-254  
70   Bijvelds MJ, Jorna H, Verkade HJ, Bot AG, Hofmann F, Agellon LB, Sinaasappel M, de Jonge HR. Activation of CFTR by ASBT-mediated bile salt absorption. Am J Physiol Gastrointest Liver Physiol 2005; 289: G870-809  
71   Werneburg NW, Yoon JH, Higuchi H, Gores GJ. Bile acids activate EGF receptor via a TGF-alpha-dependent mechanism in human cholangiocyte cell lines. Am J Physiol Gastrointest Liver Physiol 2003; 285: G31-36  
72   Park J, Gores GJ, Patel T. Lipopolysaccharide induces cholangiocyte proliferation via an interleukin-6-mediated activation of p44/p42 mitogen-activated protein kinase. Hepatology 1999; 29: 1037-1043  
73   Grappone C, Pinzani M, Parola M, Pellegrini G, Caligiuri A, DeFranco R, Marra F, Herbst H, Alpini G, Milani S. Expression of platelet-derived growth factor in newly formed cholangiocytes during experimental biliary fibrosis in rats. J Hepatol 1999; 31: 100-109  
74   Degott C, Zafrani ES, Callard P, Balkau B, Poupon RE, Poupon R. Histopathological study of primary biliary cirrhosis and the effect of ursodeoxycholic acid treatment on histology progression. Hepatology 1999; 29: 1007-1012  
75   Higuchi H, Miyoshi H, Bronk SF, Zhang H, Dean N, Gores GJ. Bid antisense attenuates bile acid-induced apoptosis and cholestatic liver injury. J Pharmacol Exp Ther 2001; 299: 866-873  
76   Danchenko E, Petermann H, Chirkin A, Dargel R. Effect of bile acids on the proliferative activity and apoptosis of rat hepatocytes. Exp Toxicol Pathol 2001; 53: 227-233  
77   Meerman L, Koopen NR, Bloks V, Van Goor H, Havinga R, Wolthers BG, Kramer W, Stengelin S, Muller M, Kuipers F, Jansen PL. Biliary fibrosis associated with altered bile composition in a mouse model of erythropoietic protoporphyria. Gastroenterology 1999; 117: 696-705  
78   Benedetti A, Alvaro D, Bassotti C, Gigliozzi A, Ferretti G, La Rosa T, Di Sario A, Baiocchi L, Jezequel AM. Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver. Hepatology 1997; 26: 9-21  
79   Miyoshi H, Rust C, Guicciardi ME, Gores GJ. NF-kappaB is activated in cholestasis and functions to reduce liver injury. Am J Pathol 2001; 158: 967-975  
80   Patel T, Steer CJ, Gores GJ. Apoptosis and the liver: A mechanism of disease,growth regulation, and carcinogenesis. Hepatology 1999; 30: 811-815  
81   Ota K, Yakovlev AG, Itaya A, Kameoka M, Tanaka Y, Yoshihara K. Alteration of apoptotic protease-activating factor-1 (APAF-1)-dependent apoptotic pathway during development of rat brain and liver. J Biochem (Tokyo) 2002; 131: 131-135  
82   Heuman DM, Bajaj R. Ursodeoxycholate conjugates protect against disruption of cholesterol-rich membranes by bile salts. Gastroenterology 1994; 106: 1333-1341  
83   Barrios JM, Lichtenberger LM. Role of biliary phosphatidylcholine in bile acid protection and NSAID injury of the ileal mucosa in rats. Gastroenterology 2000; 118: 1179-1186    
84   Que FG, Phan VA, Phan VH, LaRusso NF, Gores GJ. GUDC inhibits cytochrome c release from human cholangiocyte mitochondria. J Surg Res 1999; 83: 100-105  
85   Zoltowska M, Delvin EE, Paradis K, Seidman E, Levy E. Bile duct cells: a novel in vitro model for the study of lipid metabolism and bile acid production. Am J Physiol 1999; 276: G407-414  
86   Alpini G, Prall RT, LaRusso NF. The pathobiology of biliary epithelia. In: Arias IM, Boyer JL, Chisari FV, Fausto N, Jakoby W, Schachter D, and Shafritz DA, eds. The Liver; Biology & Pathobiology, 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2001: 421-435  
87   Jung D, Xia X, Moore DD, LeSage G. Reverse Cholesterol Transport in Cholangiocytes is regulated by LXR. Hepatology 2004: 493A  
88   Yoon JH, Canbay AE, Werneburg NW, Lee SP, Gores GJ. Oxysterols induce cyclooxygenase-2 expression in cholangiocytes: implications for biliary tract carcinogenesis. Hepatology 2004; 39: 732-738  
89   Xia X, Zhang X, Xiao Y, Chukwunvere E, Gao D, Kone B, LeSage G. Niemann-Pick C1 Like 1 (NPC1L1) absorbs cholesterol from bile and is regulated by PPARdelta incholangiocytes. Hepatology 2005; 41: 41  
90   Chignard N, Mergey M, Veissiere D, Parc R, Capeau J, Poupon R, Paul A, Housset C. Bile acid transport and regulating functions in the human biliary epithelium. Hepatology 2001; 33: 496-503  
91   Prieto J, Garcia N, Marti-Climent JM, Penuelas I, Richter JA, Medina JF. Assessment of biliary bicarbonate secretion in humans by positron emission tomography. Gastroenterology 1999; 117: 167-172  
92   Diwakar V, Pearson L, Beath S. Liver disease in children with cystic fibrosis. Paediatr Respir Rev 2001; 2: 340-349  
93   Cotting J, Lentze MJ, Reichen J. Effects of ursodeoxycholic acid treatment on nutrition and liver function in patients with cystic fibrosis and longstanding cholestasis. Gut 1990; 31: 918-921  
94   Lebensztejn DM. Application of ursodeoxycholic acid (UDCA) in the therapy of liver and biliary duct diseases in children. Med Sci Monit 2000; 6: 632-636  
95   Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid mechanisms of action and clinical use in hepatobiliary disorders. J Hepatol 2001; 35: 134-146  
96   Alpini G, Glaser S, Phinizy JL, Rodgers R, Robertson W, Caligiuri A, Lasater J, Tretjak Z, LeSage G. Bile acid depletion decreases cholangiocyte proliferative capacity and secretin-stimulated ductal bile secretion in bile duct ligated (BDL) rats. Gastroenterology 1997; 112: A1210  
97   Alpini G, Glaser S, Robertson W, Phinizy JL, Rodgers RE, Caligiuri A, LeSage G. Bile acids stimulate proliferative and secretory events in large but not small cholangiocytes. Am J Physiol 1997; 273: G518-529  
98   Alpini G, Glaser SS, Ueno Y, Rodgers R, Phinizy JL, Francis H, Baiocchi L, Holcomb LA, Caligiuri A, LeSage GD. Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid-regulated ductal secretion. Gastroenterology 1999; 116: 179-186  
99  Alpini G, Glaser S, Caligiuri A, Phinizy JL, Rodgers R, Francis H, Robertson W,Papa E, Lasater J, LeSage G. Ursodeoxycholic acid feeding inhibits secretin-inducedcholangiocyte secretory processes in bile duct ligated rats. Gastroenterology 1998; 114:AL0016  

rating: 3.20 from 5 votes | updated on: 22 Sep 2006 | views: 9764 |

Rate article:







excellent!bad…