Join for Free!
121447 members
table of contents table of contents

Tutorials » The Origins of Life » The Evolution of Cell Organelles

The Evolution of Cell Organelles
- The Origins of Life

The previous page noted the emergence of protists, organisms that possessed a distinct cell nucleus and contained organelles within its cell structure. One other important aspect of the up and coming species was the existence of mitochondria, the site of ATP creation in human cells (in ribosomes).

Cell Evolution

The mitochondria is present in both animal and plant cells in today's world, suggesting that the arrival of the mitochondria in the evolutionary chain was slightly before recognisable taxonomical differences between animals and plants.

The mitochondria is unique in the sense that the organelle contains its own DNA, which is derived from its parents. Naturally, as the mitochondria is responsible for the breakdown of organic molecules to release energy (i.e. respiration), this DNA was responsible for the reactions involved to do this.

The remarkable thing about mitochondria is their striking similarity to that of a species of amoeba, where the structure of the two are similar. In this particular species of amoeba, symbiotic bacteria enact what the mitochondria does in more advanced cell structures. The end of this symbiotic relationship no doubt increased parasitism, due to the fact that cells now possessed their own energy supply, they could be exposed and eradicated by the pathogens of the time.

Organelle Diversity

Although geological records for this period are sketchy to say the least, evidence suggests that organelles continued to diversify in this period, further differentiating the taxon that we use today to class them.

Hair like structures called cilia and flagella were developing in some species, allowing them to move with wind and water currents. This general progression and diversification has lead to the range of functions that cell organelles perform in modern organisms.

Organelle Similarity

The most unusual thing about natural is its repetition of a particular characteristic across a broad band of species. Such a situation arises when looking the the development of unicellular organisms at the time.

The organelles developing within these species all have structural similarities in relation to function. As in the example above, the mitochondria on a single cell is very similar to that of an entire species, yet mitochondria are found in almost all forms of organisms that have existed on Earth.

A push-pull relationship is notable in the evolution of these organisms. In one instance, they become more similar, either because the similarity is an advantage or because environmental pressure was forcing natural selection and thus the species to evolve in this way.

On the other hand, organisms were diversifying to occupy previously sterile environments, therefore adapting to better suit their new environment. On the other hand of this, other organisms (as above) would adapt closer to them, due to less competition in the habitat and natural selection favouring a move to this environment

In other words, nature at the time, both parasites and uni-cellular organisms, were more in less in equilibrium, continuing to expand but also moving away/moving closer in relation to other organisms...life continued to change into the Cambrian Period, over half a billion years ago.

The timeline continues into the Cambrian period on the next page of the timeline...

rating: 4.07 from 1614 votes | updated on: 1 Jan 2000 | views: 851911 |

Rate tutorial: